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FOREWORD

.The Statistical Development Series is a sequence of
comprehensive technical manuals on various aspects of the
statistical programmes which make up a national information
system for food and agriculture.  The volumes Food and
Agricultural Statistics dim the contezt of a Hational
Information System. Prograsme for the 1990 World Census of
Agriculture and its Sapplement for Europe, and Microcomputer--
based Data Processing have already been published. An-
additional volume, Goidelines on Soclo-Ecomomic Indicatoers for
Honitoring and Evaluating Agrarian Reform and Rural Development
is in preparation. In the Statistical Development Series
emphasis is placed on the need to conceptualize data sources
within the framework of a national information system which
requires standardized concepts and minimizes duplication of
efforc.

The puoblication, Sampling Methods for Agricultural
Surveys, is intended to assist statisticians in their work on
designing agricultural sawple surveys. The manuscript was
prepared for FAO by Professor Leslie Kish, Institute for Social -
Research, the University of Michigan.

Helmut Schumacher
Director, Statistics Division
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CHAPTER 1. SCOPE AND LIMITATIONS

1.1 SAMPLE DESIGN AS PART OF SURVEY DESIGN

This volume concentrates on sample design, which covers only part of
the design of sample surveys. The field of survey design is broader because it
also includes other aspects that precede, join and follow the design, selection
and collection of samples. Those other aspects are listed in Table 1.1.1, with
the understanding that the separation of its three classes is suggestive, not
dogmatic, There should be interchange of ideas on all these aspects, but the
group labeled sample design is mainly the responsibility of sampling
statisticians and the chief concern of this book.

The class labeled “joint design” also concerns sampling, but these
decisions must be shared with the subject matter experts (SME) directing the
survey, who may be economists, sociologists, agronomists, biologists, etc.
Choice of the population elements and its extent should begin with those SME,
but the knowledge and advice of the samplers should be used, to restrict the
population as necessary or to expand it as desirable and feasible, until a good
design is agreed on. The estimation process {(or estimater) is often included
with the sample selection as joint aspects of the sample design; and unbiased
estimators, for example, can only be defined by considering jointly the selection
probabilities with the weights used in the estimator. However, the statistical
analysis is typically combined with substantive analysis in practice; and they
are both often separated by gaps of time from the selection process and from
the efforts of the sampling statistician. Also, statistical analysis is the subject
of most of the statistical literature and it would be futile to try to cover it in a
sampling textbook, much less in this manual. Sampling errors also depend
strongly on the selection design and sampling theory is needed for them, but
the inputs of the BME, who are respotsible for the presentation and utilization
of data, are needed for the proper presentation of sampling errérs. The allowed

cost and the desired sizes and precisions for sample results generally come
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from or through the SME, but the samplers may well influence them, because
conflicts usually develop between desirable goals and the restrictions of
resources. The skills and knowledge of samplers may also be utilized for
dealing with problems of nonresponses and noncoverage, although these are
largely functions of data collection in the field, which is largely beyond the

samplers responsibilities.

Table 1.1.1. Relation of Sample Design to Survey Design

Sample design

Selection methods and procedures.

Sampling Units: choice, designation and identification.
Allocation of sample sizes to stages of sampling units.
Stratification and allocation (sizes,rates) to strata.

Joint design

‘Designation of population and elements.
Cost, size and desired precision.
Estimation and statistical analysis,

" Computation and presentation of sampling errors,
Nonresponses, noncoverage, weights and imputation.

Survey design

Survey variables: choice, definition, measurements, observation.
Data collection, coding, processing, computing,

Substantive analyses: Methods and models.

Domains of analysis: choice, definition.

Response errors and biases.

Presentation of data, statistics, and results.

Utilization of results.

Because we concentrate on survey sampling, the related Selds of

experimental desigﬁ, observational studies, census and registers are not
covered. But many of the methods developed here are alse useful in and

relevant to those other methods of résearch [Kish 1987].



1.2 AGRICULTURAL SURVEYS

Agricultural surveys cover a great diversity of variables and a list may
be useful even if incomplete.
1) Land areas and tenure.
2) Crop acreage and production, including pastures..
3) Vegetables, fruits, nuts,
4) Livestock, poultry, barns and pens.

5) Fishing, hunting and timber only as part of farming operations, not
distinct industries.

6) Tool, machinery, fertilizers, pesticides, seeds and other inputs.

7) Irrigation, wells, drainage, fencing as parts of farms,

8) Income, marketing, expenses, savings and other economic data about
agricultural production and population.

9) Population counts and characteristics; unpaid and hired labour.

10) Health, education, occupation, and social statistics of agricultural

population.

11) Farm homes and buildings. :

12) Transportation, communication of farm population,

13) Food sources and food consumption. }

14) Attitude surveys about policies, methods, products, ete.

Other data of a great variety may also be collected as auxiliary variables
related to the principal agricultural variables noted above. The sources of the
data may be agricultural holders and operations, or they may be the
agricultural households for other data. These are mostly small and numerous
units. But sometimes large units {such as sugar mills, warchouses, grain
elevators etc.) may also have to be included. These are unusual and very
diverse, and they can only be covered generally and superficially. Chief

attention must be placed on the many small farms and households.

Attention will also be focused on domesticated animals, fisheries and
plants, as grown, raised or focused on farm operations. No separate attention
is paid to maritime fishing, lumber and forestry, or hunting and trapping of

wild animals.
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Household surveys for agricultural income and food consumption may be
included. Also the connection of agricultural surveys to integrated household
survey operations must be noted also (Chapter 17). Most agricultural surveys
are more restricted and omit some of the types listed above. On the other
hand, some surveys may include other agricultural items of special interest in
the country and attach non-agricultural items in integrated surveys. The list

_cannot and need not aim at being complete: i)ésignating variables is not
primarily 8 sampling task, as distinguished in Table 1.1.1.

1.3 MULTISUBJECT AND DIVERSE SURVEYS

Agricultural surveys are usually most difficult and complex because that
single word covers a tremendous variety of activities and purposes in four

ways,

First, they are multisubject (Ch. 9 in eésential ways because
“agriculture” covers a great variety of distinet “industries”. Growing maize,
wheat and irrigated rice differ greatly, and these grains are very different from
vegetables and truck gardens, and from fruits and nuts. Then also raising
sheep.. goats, dairy cows, range cattle, pigs, poultry, rabbits and fish all
describe different occupations. Then come the economics of buying seeds,
fertilizer, tools and machinery, and of the even more varied activities of selling,
including marketing in town. And so on down the list of 14 in the table above.

Furthermore, each of these subjects also becomes multipurpose, because several

variables are often required, and each of these for several domains (Ch. 9).

Second, often they must alse be multi—method because different
variables and subjects need drastically different methods of measurement. For
example, consider the different skills needed to measure crop asreas, crop yields
{(before and after harvest), counting animals, accounting for expenses, income,
savings and loans. Then think of the household imterview about age, sex,
education, health items. And so on. Sometimes one set of field survey workers

may be trained for all these skills, but in other situations two or more sets of.
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enumerators must be trained, employed and coordinated, The need for several
languages may be mentioned here, but each village tends to use one language,
which can often be ascertained.

Third, both natural conditions and cultural norms impose even greater
variety than reguired by the several subjects and variables of each survey.
The growing of any crop (e.g. rice) varies greatly between countries and
between regions and even districts of the same country. Differences may be
related to climate, moisture or irrigation, but alse to tenure, economics,

religions or ethnic cultures.

Yourth, repeated or periodic surveys (Ch. 16) are often needed for
collecting agricultural data. Different crops mature in different SEASONS
(including animal products) and often the same field may produce several crops
of different or even of the same kind. In many cultures retrospective surveys
over the whole year will not produce data of acceptable quality, because neither
the records nor memory are good enough. Then repeated surveys may be
planned to coincide perhaps with barvest (o birth) times, or sometimes with

traditional marketing dates.

1.4 FOR DEVELOPING COUNTRIES (DC'S)

Although our treatment will be as general as feasible, chiel attention
must be paid to the hundreds of millions of peasants in the less developed
countries, mostly in Asia, Africa and Latin America. First of all they are‘much
more numerous, because the DC’s have greaver total population, and alse
greater proportions in agriculture, cémpared to the fast decreasing agricultural
sectors in the industrialized countries of Europe, North America and the
Western Pacific. Second, the weslthier, more developed countries are also
likely to have already developed their own methods and offices for agricultural
surveys and censuses, For these reasons their needs for basic instruction in

sampling seems less pressing now.
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The differences between the two situations are many and great, though
many individual overlaps and esceptions can be found. There are great
differences in income, expenses, lifestyle and type of farming. The differences
with greatest impaét on methods dépend most probably on the prevalence of
telephones, automobiles, and roads, a well developed transportation and
marketing system, This last aspect also greatly affects home economics, food
consumption and market reliance. The health and literacy status and social
organization differ greatly. For all these reasons transfer of techniques of

agricultural surveys from industrialized countries to DC’s is risky and difficult.

There are great differex;ces of agricultural practices between less
developed countries as well as between regions and even districts within them.
These concern nature of crops and growing practices, animal husbandry. type
of settlement, such as villages, versus open country living, nomadisn;‘; ete. In

many DC’s there are also areas and groups with modern agricultural practice.

1.6 SIMPLE AND BRIEF

This manual is designed to be taught in a course of 2 or 3 weeks. It
should also serve as a briel source of reference for practitioners of survey
sampling. Also, both those uses should be available w agricultural officials who
are not sampling experts, nor necessarily professional statisticians. However,
it does assume, with its combination of brevity and depth, about 2 or 3 courses
in statistics.

It must also assume knowledge of agricultural practices in order to be
able to translate the general recommendations of this manual into the many
specific veriables and subjects referred to in 1.3 above, and in terms of specific
situations and practices of their home countries. It aims to be entirely practical
and concerned only with sampling aspects of agricultural surveys, as delimited
in 1.1 and 1.2.
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The style aims at being simple and direct so as to be translatable and
comprehensible by readers of many countries. Because of its brevity it cannot
be comprehensive, hence it attempts to concentrate on the most broadly useful
methods. Thus it may bypass methods of theorstical interest and intellectually
stimulating novelties. Even for the methods presented, often not all procedures
can be developed in detail. The missing procedures can be developed in

practice, or they may be found in the many references provided.

The manual is not mathematical and derivations of the formulas must be
omitted for technical reasons as well as for breviiy. These are provided in
references to several books, but only one or two references for each formula.
But mest derivations can be found in several textbooks on sampling, and the
readers should alreadv have chosen ome or two favorites among Cochran;
Hansen, Hurwitz and Madow (HHM); Murthy; Sukhatme; Deming; Yates; and
Kish.
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CHAPTER 2. POPULATIONS AND ELEMENTS

2.1 DEFINITIONS FOR SURVEY UNITS

The elements of a population are the elementary wnits for which
information is sought in a survey, and about which inferences are made. They
are the units of analysis and their nature iz determined by the survey

objectives.

The population is the aggregate of the elements, defined jointly with the
elements, and in terms of a) content, b) units, ¢) exnént, and d) time. For
example, the a) area in rice production of b) holdings in ¢) province P or country
Cin d) 1988. Most, surveys may yield information about several populations.
For example, a) the content may include other crops, livestock, poultry, income
ete.; b) the units may be subdivided or combined; ¢} the extent may be divided
into subclasses, but also combined into national statistics; and d) data may be
obtained for separate months .and for several years.

For agricultural surveys the populations usually comprise one or more of

three kinds of elemenis,

a) Holdings, or farms, or farm operations are the most common names
used for the lands, crops, animals, buildings etc. involved in agricultural
operations. The names differ between cultures, snd holding is a neutral,

international compromise.

b) The holder is a person (civil or juridical) who operates a holding,
exercises management control over the holding operation, and makes major
decisions regarding resource use. He may be called operator, or farmer; and
peasant is still used widely in Asia, Africa and Latin America, less often in
Europe,
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¢} A dwelling, and (its occupants) & househeld, with a homemaker, and a
Wead of household, may be identifiable with each holding and holder. These
may be basic units for food preperation and consumption, for income, and

expenditures, and for social activities.

Identification of these three kinds of elements may be multiple, not
necessarily one—to—one, For example, a holder may operate two holdings;
and the holder may include two partners (brothers), hiving perhaps in separate

dwellings. Definition of population elements is also a problem for censuses, and

beyond the gampler’s realm; for example, the definitions of holders, or holdings,
or parcels. However, sampling considerations may indicate the use of dwellings
for practical identification, although their cccupants, the households, comprise
the population.

Many variabies can be usually measured on each element, and we can
think of & vector of p varinbles (Y, Yo Yag oo Yp;) associated with each
element 1 § = 1,2,... N) in the population. Other subunits may be usefully
noted, such as separaté parcels in one holding, and animals, machines,
buildings of the holding. These may denote the “contents” of each unit noted

above, They may be considered as the elements on some surveys.

Observational units are sources for data about elements and variables
and they are called respondents in interviews and questionnaires. For example
the ‘holder gives 'information ahout cattfle as elements, and the homemaker
informs about the children’s health, vaccination, and education.

Sampling units contain the elerments and they are used for sampling
elements. Each sampling unit contains only one element (or none} in element
san{plz’ng {Ch. 3), but the clusters used in cluster sampling (Ch. 8) may contain
several, and often many, elements. Listing units are used to identify and select
sampling units from lists or frames (Ch. 4).
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Four Location fypes are important features of agricultural surveys, and
these relate the locations of the holders’ dwellings to the locations of their
holdings. Usually either &) or b) predominates in any country or province, but
the other three must also be covered.

a) In open countrj settlement most agricultural dwellings are located on
the holding, as on the farms in the USA and in some African countries.

b) Most holders may live in villoges, from which they travel daily to
work their croplands. The animals may live mostly close to the dwallings in
villages.

¢} Living in towns end cities ocours in most countries, and is common in

some,
d} Nomodic living may mix two of these types in seasonal migrations.

Definitions of what agricultural operations to be covered in any census or
survey are varied between countries and someiimes even between surveys.
Section. 1.2 hints at some limits for what may be included in agriculture.
Lower limits on sizes of operations to be covered in surveys of production are
also needed, w exclude very small producers who would be too difficult and too
costly to include for their negligible contribution to the total vield. Comumonly
small vegetable gardens and small pens for chicken, pigeons and rabbits in
cities and vowns must be neglected.

Agricultural surveys (and others also) must provide statistics not only for
global population, but also for separate domains (subpopulations) of several
kinds: provinces and other administrative divisions; types of farming, ags of

holder ete. (Ch, 8). For agricultural surveys separate ﬁéld procedures may be

devised for three levels of technological development: traditional piogressive,
and modern. Furﬂ:erirxore some types of holders may operate large and
widespread holdings, and these often require and benefit from special frames
and procedures (Ch. 11), ‘
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2.2 FOUR LEVELS OF POPULATIONS

Sampling from every type of population — holdings, holders, dwellings
etc. - is subject to several imperfections, such as nonresponse and
noncoverage. Therefore, it is useful to deseribe four levels of populations
- gurvey, frame, target and inferential — separated by three kinds of

imperfections that are common to most surveys.

Samples give direct evidence about the surbey populations they properly
represent. Sampling errors indicate the fSuctuations of sample statistics (e.g.
the mean ¥) around the population value ¥ that a complete census would have
vielded with similar survey methods; these errors can be estimated from the
data of the samples themselves, when these are properly designed to be
“measurable” (Ch, 14). It is preferable w have the survey popuhitian 80
defined as to slso carry the differences due to item nonresponses, which differ
between variables; and these may be “adjusted” with imputations or weights
(Ch. 15).

The frame population covers the elements from which the sample was
actually selected, but it is larger than the survey population by the amount of

total nonresponses due 0 not— at—homes, refusals ete.

%

The target population differs from the frame population by the amount of
coverage errors: the frame population is smaller by the noncoverage, which may
alsovbe called missing units, or incomplele coverage. However, the frame may
also suffer from overcoverage of units from outside the target population, and
the algebraic difference of noncoverage minus overcoverage is the net
undercoverage. It is worthwhile to distinguish these populations and these
imperfections because of practics! differences in their effects on statistics. The
extent of noncoverage is difficult to measure; but for nonresponses the amounts
may be counted, though their effects may be obscure; and effecis from item
nonresponses may ofien be better adjusted {Ch. 15). Another practical
difference: developed countries may often have smaller noncoversge than
DC’s, but larger nonresponses, especially refusals. Noncoverage is due to
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Figuve 2.2.1 Discrepancies between four poyu}utmm [Kish 1987, 2.1]

Probability smnples underlie the achieved survey populaiion, bul two discrepencies come
even betwsen them: sampling errors and iiem nonresponses. Both of these differ groatly
among varisbles and the amount of item nonresponse is shown as d:mrmg greatly among
variables. For both of these discrepancies the sample responses serve as bases; sampling
grrors are computed from them; and they are used for “imputing” or weighung for llem
NONTBEPONSLS.

Thus probability samples are shown as s broad send solid foundation for the survey
population, on which to build the structure of the inference above it. For the discrepancies
beycnd the survey population sne must go beyond the sample data, with the help of implicit
or explicit data. The apan to the frame population is due w total nonresponse of diverse kinds

{refusals, not-at-homes, ste); the size of nony may be estima from
records (with effort and cave}, but estimating thmr effects needs models and auxiliary data.
The “size of noncoverage can only be esti d with or from checks with ouiside
BOBICBE, yot this portion also belongs to the terget population. This may also include a
d d and deli elusion Trom the coverags.

Furthermora, ump)e daote are also veed for infevences beyond the wrget populations, and
these sre many, varions, and ill “Super lations™ of g theory are not only
among thess, but behind all these in lati Thew de

inferences (1.8) are o often mersly implicit. Even more vaguensss describes the path of
judgment samples directly to the target population, and such veguensss is indicated by the
thin, wavy, population line, as for the extrapolations to vague inferentis) populations.

faulty frames, and this imperfection should be distinguished from deliberate
exclusion of part of the target population for practical, economic or tactical
reagons; for example, & province though perhaps large in territory or even in
total population may be excluded if it hes too few holders, or is subject to
rebellion, or too distant or may otherwise not be economically approachable.
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Thus we ascend from the sample to the survey population, then to the
frame and finally to the target population that is initially designated for the
sample design, and these are three conceptually specified populations. But
inferences must also be made from the target population to a wide variety of
other populations. For example, from the statistics for one year, inferences are
also made into the future and sometimes into the past. Also from statistics for
one province, inferences may be made to national values; and often, on the
contrary, inferences from national statistics are made to population values for

provinces and other domains (Ch. 8).

Models are needed to span the gaps to inferential populations, though
such models are usually only implicit and seldom explicit. Those leaps of
inference differ greatly from the smaller and more explicit four steps needed to
the target population. Designs for samples cannot possibly be planhed for all
the populations to which inferences will be made by all its users. But the four
steps from the sample to the targel population should be considered in the
'sample deﬁigﬁ. For example, an epsem overall sampling fraction should be
designed for the planned sample size n in order to discount for émicipated
proportions of noneoverage and nonresponse:

f= n planned
N (estimated)x(1 ~noncoversgex(1— nonresponse)

2.3 ALTERNATIVE METHODS OF SAMPLING

Probobility sampling requires known nonzero prebabilities of selection
(P, > 0) for all elements (i=1,2,... N) listed in the specified frame population.
Those probabﬂities must be assured with mechanical procedures of selection for
all sampling units of the population, at each stage of selection. This manual is
devoted to probability sampling and it is discussed in Bectiorf 3.1. Here we list
some alternstive methods that have been used for agricultural and other
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sample surveys. The descriptions must be brief and incomplete, because they
are bevond the scope of this manual, but also because the great variety of
procedures prevents clear deseriptions and definitions,

Quote sompling is widely known from political voting polls, but it has
also been used in agricultural surveys. For example, from a (random?)
selection of districts or census Enumera;ion Areas (EA’s) the enumerators may
be nsked to fill quotas (numbers) of specified types and sizes of holdings. These
numbers could be based on proportions from the last census, which could be
obsolete and also based on discrepant definition of holdings. “Quota sampling is
not one defined scientific method...Yet some general observations may enlighten
readers ...” [Kish 1965, 18.7).

Judgment sompling denotes vaguely any method of selecting units —~
districts, EA’s or holdings ~ based on expert judgment. These can be extremely
varied, and thus they defy definitions and general descriptions. But even in
specific situations they are difficult to evaluate scientifically.

Muodel dependent sampling has a larger place in theory than in the
practice of agricultural or other surveys, It differs from judgment sampling in
mathematical elaboration and in the more or less specified models for expert
judgment (3.1),

Voluntary cooperators have been used for crop reporting systems to
obtain rapid, economic reports with great geographic detail on the growth and
yield of crops, on prices and other variables also. Although cooperating holders
generally do mot comprise a random (or representative) sample of the
population, some hope that with ratios and adjustments their reports can reflect
relative values of changes between reporting periods,

Fortuitous, aceidental samples of holders may sometimes be persuaded to
cooperate in a survey, after they are found as voluntary mombers of some

association for marketing, religious practice ete. Expert opinions needed to



15
judge their representativeness link them with judgment sampling, or with
voluntary cooperators, or with network sampling. These should not be
considered equivalents of probability sampling.

Network or snowball sampling refers to procedures for using members of
a sample to help identify associated, usually similar, members in the
population. For example, growers of a rare crop, such as specific fruits or nuts,
may identify similar growers in their own districts. Unfortunately, however,
defining the probabilities of these identifications, hence of selections, remain
unknown.

Sampling of time intervals has not advanced as far as sampling the space
dimension, where probability saropling has been accepted as the standard.
Sampling time is still mostly done by judgment selection of the best, or most
representative, or some unigue period. But sampling over time is possible in
periodic samples and may be especially important for agricultural surveys
{Ch. 16). ‘

Restricted sites are still used when a widespread sample is not feasible for
economic reasons. For example, instead of a sample spread over a national (or
provincial) frame, one or a few “typical” districts may be chogen to “represent”
the larger population. The inference from the few sites to the larger population
must be based on experi judgment rather than on stﬁtistical inference, as we
use that term [Kish, 1987, 3.11.

Telephone sampling and telephone surveys are two current methods that
are often confused but should not be [Groves and Kahn, 1979; Groves et al,,
1988]. Conducting agricultural and other interviews has long been dome
successfully by telephones in many countries, but interviewing is not the
subject of this manual. The telephone numbers used may have come from area
samples or from lists of special populations. On the other hand, random
sampling of telephone numbers to reach bouaebolds poses problems of lists and

selections; it may be worthwhile in countries where 90 percent or more, but not
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where less than 70 percent, have telephones. In any case to use telephone
numbers to selery agriculeural holders does not seern practical, especially in the
DC’s. Not yet.

kMax’l Surveys from specially listed populations have had return rates that
range from wvery bad to pgood, depending on several factors, such ag the
population (motivated, cooperative, literate?) the sponsor, the brevity of the
questionnaire form, the number of repeat mailings, ete. [Dillman 1878, Kish
1965, 13.4). “Mailbacks” of questionnaires left at dwellings on surveys and
censuses can receive large returns from cooperative and literate populstions,
But sample selection of mailing addresses for agricultural surveys does not
seem feasible, especially in DC’s.

Mized methods offer o many possibilities for a complete listing of all of

' them;. Congider, for example, g judgment selection of four districts (or E&’s),
followed by good probability selections of holdings within each of the districts
(or EA’s). How would inferences be drawn from the sample of four distriets to

population values of the entire province or nation? On the contrary, sometimes
districts - (or EA’s) may be selected with known probabilities, but selections
within districts may be done with guots or other nonprobability methods,

2.4 POPULATION VALUES AND STATISTICS

Population values are expressions that summarize the values of some
characteristics for all N elements of an entire population; they summarize some
features in the defined population. The basic examples for survey sampling are
the populution meens § = IV/N=VY/N and the population totals ¥ = IV,
Other examples are the element variance, either ozy = BY; — TIN or Sf, =

NoZ/(N — 1), the covariance oy,, the correlation coefficient Ry, = o,,/0.0

Tyal Oy
ete. Population values depend on four aspects of the population: 1) the specific

target population, 2) the nature and distribution of the specified survey
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variables, 3) the specified methods and procedures of measurement, and 4) the
mathematical expression for summarizing the population value from individual

element values,

True values denote numerical expressions that would be obtained from all
glement values in the population if these were free of errors of measurement.
Thus the differencé between the population mean and the true mean ¥ - ?me
= Bias is the mean value of the errors of measurement. For unbiased
measurements B=0 and ¥= ?me' The term porameter is often used for either
of these, and to aveid confusion we may generally avoid it. The population
value and the true value refer to concepts not observable in sample surveys,
but they define the systematic Biss of messurement that is not affected by
sample size. The population value would be obtained if the entire populstion of
W elements, were designated for measurements ufxder the same essential
survey conditions as the sample of only n elements. Thus the sample statistics
is linked through the population value and the Bias to the hypothetical true
value being sought. This Bias is distinguished from the technical bias later.

The sample value, or stotistic denotes a specific numerical estimate
eomputed from the values of the n elements in a specific sample; for example,
the sample mean ¥ = Dy/n of the n observed sample element values y;. Itisa
variate or random variable, which depends on the sample design and oo the
specific elements that we selected into the sample. The par;icular estimate, or
statistic, is only one among the many possible estimates that could have been
obtained with the same sample design.

The estimator differs from the specific estimate from one sample: it refers
to a defined method of sample selection and statistical estimation. The
estimator applied hypothetically to & population would generate the sampling
distribution of the estimator of all possible estimates, only one of which appears
in the actual sample, The mean of this hypothetical distribution is the expected
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value B of the estimator ¥, and the standard deviation of this sampling
distribution is the standard error Ste(¥) = /Var(y) of the estimator ¥, and
Var(y) = Ste®(y) is its variance.

The sampling distribution of an estimator ¥ is the theoretical distribution
of all possible values of the estimate (¥,), each with its probability of cccurrence
{(P,). The possible values and their distribution depend on the sample design
{size, selection, estimation) applied to the population disteibution (which
depends on the four population factors noted above). The mean of the sampling
distribution is its expected value: E() = IP.(¥.) and the deviation of a
specific estimate (statistics) ¥, from its population value has two components:

y - ¥ =I5, - E®) + [E®) - T

The component [E(F) ~ Y] is the sampling bias of the estimator §. When
the mean of the sampling distriﬁuﬁan equals the population mean, E® = ¥
the sampling bias [B(¥) ~ Y] = 0, and 7 becomes an unbiased estimator. We
distinguish this technical statistical bias from those for the measurements
Bias = (¥ ~ ¥,,,.), which are often more serious and more difficult to assess.

The mean square error of ¥ defines the deviation of a specific estimate of
¥, from the population value. The average of the squared error in the sampling
distribution is :

MSE@) = EP.F, - D? = BRI, — EGP+EF) - ¥1? = Var(§) + bias®

The variance Var(¥) depends on the entire sampling distribution and
remaing unknown. But from measurable samples we can compute estimates
var(§) for estimating Var(§), as discussed in Ch. 13, Furthermore with the
standard errors ste(¥) = ./ var(¥) we compute confidence intervals § %
tyste(y) for inference from the statistics (F.) to the population value Y (8.5). As
a basic example, in simple random sampling(srs) the value var(¥) = (1 - f)sf,/n
is computed from the n sample elements and is used for ste(¥) = fvar(®).
This var(¥) is an estimate of Var(®) = (1 - DS§/n and this is a mathematical
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expression for LP.F, — Y)%. For srs both § and var(§) are unbiased
estimators, but these unbiased qualities do not hold for most other epsem and
probability samples (3.4~3.58).

In this simplified view of the sampling process the errors of
measurement have been disregarded, except for the Bias noted shove, but they
are considered in Ch. 15.

CHAPTER 3. FOUNDATIONS

3.1 PROBABILITY SAMPLING WITH CHANCE PROCEDURES

Probability 'sampling assures for each element in the population (i =
1,2,..N) a known positive probability (P; > 0) of selection. This assurance
requires some mechanical procedure of chance selection, rather than only
assumptions, beliefs, or models about probability distributions. The

randomizing procedure requires a practical physical operation which is closely

{or exactly) congruent with the probability model. The most tommon and best
known chance procedure consists of the proper use of a good table of random
numbers; but now computer programs can often replace selection by hand. The
statistical inference in sample surveys depends on this chain of requirements:
statistical inference — measurability - pfobability sampling — mechanical
selection — lists or frames. Measurability will be touched on in 3.7 and based
on sampling errors in CH. 13. The need for and use of frames are discussed in
CH.4.

Simple random sampling provides a basic standard: From a table of
random numbers select n(different) numbers independently from 1 to N. Each
of the N population elements is identified in the list (frame) with one of those N
numbers, and thus receives the equal prebability P, = n/N = f {the sampling
fraction) of being selected. The n “different” numbers produce srs without
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replacement; otherwise, with repetitions permitted, ars with replacement
" results. This shows the survey sampling equivalent of 11D, the “identically
and independently distributed” random variables of statistical theory.

Without independence of the n selections, there are other kinds of eqv;al
probabilities selection methods, or “gpsem”, with P, = f = n/N,, For example -
stratified or syswematic selection of elements (CH. 5) or clustered selections
(CH. 8}, When the sampling units can have seversl (or many) identifying
numbers unequol selection probabiﬁties results (P; variable), instead of epsem.
For example, if the ith unit receives m; identifying numbers as its measure of
size, with n selections it receives P; = mf selection probability, and
“srobabilities proportional to its measure of size, ny, (or PPE).

This framework of survey sampling isb often called *finite pepulation
theory”. However, the finiteness of N elements in the population is not its
crucial characteristic. For example, by sampling with replacement, the
finitensss of N can be overcome in theory, though it seldom is in practice. The
theory of survey sampling is distinctive because it is population bound: bound
to the target population (2.2) and % mechanical selections from population
frames (Ch. 4). Thus it differs from the model— dependent framework of some
writings in the theory of sampling, which approach the theory of random
variables [Kish 1987, 1.8]. In this framework the sample can be viewed as
arising from a “superpopulation”. The populaﬁon-—-—bbund framework can and
should admit a theoretical superpopulation that gives rise to the target
population and slso to the populations of inference. However, statistical
inference in survey sampling links the sarnple only to the frame or to the target
population, snd model~dependent inference (or superpopulation theory) is
needed only from then on (2.2).
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The essential distinction of probability sampling lies in its insistence on
mechanical selection of sampling units; and on basing the estimation of
sampling errors on sample data in full accord with the sample design [Ch. 13}.'
However, models and expert judgments must be used to deal with designs and
with imperfection.

3.2 MODELS FOR DESIGNS, BIASES AND INFERENCE

Models and the judginem of substantive experts are needed even for
probability samples, and especially for two broad aspects: for designing
samples at their start and for treating imperfections at the end.

The design of samples involves in all its many aspects population values
(parameters) that the statistician cannot know, cannot even estimate well
before completing the survey, and therefore must guess. For example, the
desired overall sampling fraction (or rate) may be expressed as f = n/N =
D25%/8e?(FIN for estimating the mean ¥. The element variance 5% and the
design effect D must be guessed, after determining the population size N and
the desired standard error 5te®(¥). On the other hand, the sample size n and
fraction f are often based instead on the allowed total cost cn; then the Ste?()

must be guessed from that (Ch, 9}

Many other aspects of the design process require guesses about
unknown parameters and these will be mentioned in the appropriate chapters.
The stages of selection used in the design must be determined, together with the
nature and numbers of sampling u;'xits in each. The numbers of selected units at
each stage are important design factors that must be determined alse (Ch. 6).
The design of stratification for each stage — the choice of variables, the number
of strats, sampling fractions — also reguire judgment. Furthermore, it would
be desirable to base all these choices on multipurpose considerstions, not only
for one single statistic, and their relative importance must be guessed. The
multipurpose character of most surveys pervades all aspects of designé,
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affecting all design parameters and this cannot be stressed too st:mhgly,
because it also multiplies the need for the use of models, judgment, guesses in
the design of samples (1.3 and Ch. 9).

Errors in guessing design parameters are unavoidable, but fortunately
their effects differ from mistakes in judgment in other sampling operations:
Errors in guessing sample design porameters reduce their efficiency but not the
validity of sumple statistics. The statistics, including their sampling errors, are
caleulated from the sample results, hence they are not biased by mistakes and
errors in the models. The design parameters can also be estimated from
gample results to improve future designs. This situation differs from those
created by biases due to errors of response, inonrespanse and noncoverage,
whose effects are difficult or impossible to assess well from the survey results.

Biases of nonresponse and noncoverage need models or judgment, first for
the design stage before data collection, but also later for interpreting the
research results and making inferences from them (CH. 15). The models
needed differ with the amount, degree and nature of our ignorance. For each
item nomresponse many other varisbles are available for the same individual
that may be used for imputation‘af the missing item with models based on
similar individuals. For total nonresponses the number of missing individuals is
known plus perhaps some related variables by strata (subclasses) for
reweighting. For. noncoverage both the numbers and kinds of xmssmg
individuals are unknown without extraordinary and expensive efforts, and good
models may be difficult to find and justify.

Measurement Binses lie mostly beyond the field of samplers and need the
expertise of subject specialists, but statisticians may help with the construction
of models. Statisticians cen help even more with designs for measuring
varinble errors of observation, which increase in importance, relative to biases,

with decresses in the sizes of subclassés (Ch. 15).
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Methods of cstimation and of statistical analysis may also need to be
chosen from several possible alternatives. Also choice of auxiliary (ancillary)
variables and of control variables, and of summary statistics all need decisions.
Those decisions and choices may have to be based on imperfect information and
models may be needed. Here the techniques of statistical analysis are available
and must be utilized, together with expert knowledge of the substantive field.

A technical bins of some estimators occurs often. We distinguish
technical biases denoted by [E(¥) — Y], from measurement Biases dencted by
[¥ ~ ¥yue) Technical biases should be small and decreased by larger sample
size for consistent estimates. Also models for their measurement and control

are more readily available (Ch. 15).

Inferences from the target populations to other “inferential” populations
need strong models. Statistical technigues may help, but broad knowledge of
the subject matter is most crucial. Substantive, specific knowledge of the field
should be combined with mathematical statistics to model causal systems that
could produce the desired populations, “Superpopulation” is often used fo
denote a model population as the source (parent) of the separate populations
involved. However, the approach in probability sampling insists on keeping
distinet and separate from these models the inferences from samples to the

target population (2.2).

3.3 LARGE, COMPLEX SAMPLES

Survey sampling is mostly concerned with large, complex samples from

large, widespread populatio To cover large, complex populations a large

survey organization is needed to design the sampling frame, select the sample
and then to éollect the data: and only large samples can justify the expense for
engaging such large survey organizations. Fortunately those large sarples
permit reliance on simplifications based on asymptotic results which are needed

for complex samples.
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Simple selection methods may be used for sampling from small, corpact
populations. For example, for a population of 1,000 or 6,000 units (e.g.
dwellings of a town, farmers of an area) a frame may be available or be
prepared to facilitate both a probability selection and then the cullection of data.
Simple selection is also possible even for a large, widespread population if a
good selection frame and easy collection methods are both available. For
example, telephone sampling or mail surveys may be carried out for large
populations if they are well listed and willing and able to become good
respondents, This will seldom be true for agricultural surveys.

What are complex samples, and how and why are they complex? The
nature and causes of complex designs are sketched in Table 3.4.1 and
developed throughout this manual, but 2 brief summary is desirable here. a)
Stratified element sampling is common, because stratification is usually
preferred even when simple random sampling would be available, as for the
simple populations cited above. Svstematic sampling raay also be used instead
of soiatified random. These complicate the analysis but ofien the effects may
be mild enough to be disregarded (Ch. 5). b) Cluster samples pose the most
important common problems in survey sampling, They are commonly needed
for reasons of the costs of listing and of data collection. They also make for
considerable increases in variances and in the costs of their cornputations. So
they are troublesome but often unavoidable. Cluster samples can be selected in
two or more stages, and stratification is commonly used in all stages of
clustered and multistage samples. Variable sampling probabilities, and
probabilities proportional to size (PPS) may be used in several stages (Ch. 6).
¢) Two-phase or multiphase sampling may be used for screening operations
{Ch. 11). &) Weighting may often be used to compensate for unequal selection
probabilities that may result either from frame imperfections or from
deliberately designed allocations. Weights con have drastic effects on the

estimates and on their variances.
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What is large enough is even more difficult to specify, but the distinction
must be made although no sharp boundaries separate large from small
samples. A large number of elements alone n is not & sufficient guide because
the number of primary selections must also be large enough for dependable
results. For example, 3 or 4 distriets will not provide a secure base for
inference in survey samples even with large mumbers of eleroents n, both
because of large variances and because of the instability of variance estimates
from few “degrees of freedom™ (Ch. 14). Outliers may also cause problems,
because even large nwubers of elements may fail to include enough of these.
These typically are caused by the few large elements on the extremes of
skewed distributions; e.g. large farms, or large incomes.

The theory of survey sampling has been developed chiefly simple
statistics like means ¥ and aggregates ¥ and for inferences based on their
standard errors ste (¥), as described briefly next (3.4),

3.4 MEANS AND STANDARD ERRORS

To cover large complex populations complex sample designs and
operations are necessary. To justify those complex samples usually large
samples are needed, and these are also needed for the accuracies and details
required of the statistics yielded by those samples. Those design complexities
prevent us from relying on the usual assumptions of L1LD,, and we must rely
instead on the asymptotic assumptions for large samples. This background
(often unstated) justifies the concentration of this. manusl, and of other
textbooks on sampling, on estimates and their standard errors for inference.

The complex distribution of population elements interacts vﬁtb the
complex sample designs to produce complex samples. For example,
agricultural area samples composed of selected districts and area segments
show the clustering effects of soils, climate and farming practice. Such “design
effects” have been found in thousands of surveys in agriculture, labor force,
economic, social, healith, education statistics ete. Social and other scientific
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theories combined with mountains of evidence should persuade us that the
world does not resemble the “well—mixed urn” of random, ehance events
assumed in probability and statistical literature,

Stutistics

Complox snplyticel
atalistics, 0.4., H0~
efficionts in ragression

S

Difficuit
BRR, JRR
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Figure 3.4.1 The of ore. Row 1 iz the domain of standard
statistical theory, and column 1 of survey samplmg [Kish and Frankel 1874].

On the other hand, most statistical analysis techniques begin with “given
n random variables” — either stated or implied. This assumption of the LLD.
property facilitates the derivations for complex statistics, and that is the reason
for the assumption of LLD., rather than any explicit belief in the randomness
of either the selections or the populations of sctual sample sets. Many
derivations for small sample theory (like “Student’s t") also assume normality
of the population distribution. Nonparametric and robust statistics dispense
with the normslity but net with the LLI. assumptions. Those assumptions

facilitate having one theory for small and large samples, whereas survey
sampling must rely on asymptotic large sample theories, which are older [Yule
and Kendall, 1965, Chapters 17-18]

Complex selection designs have quite different eﬁ‘ects on the two classes
of statistics that concern us: On descriptive or first—order’ statistics like the
mean ¥ on one band, and on inferential or mond-order statistics, like their
standard errors ste(V), on the other. For descriptive statistics the estimates in
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probability sampling must represent the frame population. Hence the simple
estimate of the population aggregate becomes Y= Lyin where vy i8 the
value and p; is the probability of selection of the j—th sample element. For the
mean this becomes ¥ = %wjyj/mj, where w;y = 1/p; But note that for the
mean, and for other similar statistics, any convenient weights may be chosen,
so long as they are inversely proportional to selection probabilities. For “sslf -
weighting” saraples from epsem selections where p; = o/N constant, we can

use § = Lyn, the simple, usual mean of sample cases.

Later we shall note modifications of these weights in order to make the
estimates represent modifications of the frame populations (Ch. 12).
Proportions and quantiles’ utilize simnilar weights, Furthermore, with these
weights we may compute other descriptive statistics such as 532,, Syyr Ty 8L,
which are consistent estimates of similar population values Sf,, Syx, Ryx ete.
Moreover, these siraple estimates alse hold for statistics for subclasses, which
estimate similar values in domains (subpopulations) of the population. Thus
estimation for deseriptive (first—order) statistics seems relatively simple because

it may neglect the complexity of the methods used for selecting the sample,

On the other hand, estimates of inferential second-order statistics must
reflect the methods of selection actuglly used. The inferential statistics are
cox;ﬁdence intervals and similar probability intervals such as Bayesian credible
intervals, fiducial limits, tolerance limits), also tests of significance. These
inferential statistics depend on the methods used for sample selection, because
the sampling variability (the sampling distribution) of the statistics (like ¥)
depend on the selection design, which oftes has profound effects on that
variability. That variability depends net only on the probabilities P, of
selection, but also on the joint probabilities Fy; of all pairs of elements in the
population. These joint probabilities can vary greatly between the N(N ~ 1)/2
possible pairs of population elements. For example, two elements (i and j)
selected from the same complete clusters have joint probabilities
Py =P, =P =P, (where P, is the selection probability of the cluster),
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instead of Py « 2/N(N — 1). Computing inferentinl statistics must reflect the
actual sample design. They are based on sampling errors, whose computation

for the many complex design is-a most important function of survey sampling
(CH. 13,14).

Standard statistical theory deals adequately with sampling errvors for
statistics from simple random selections as indicated on the top row of Table
3.4.1. Methods for computing sampling errors for complex selections tend to
concentrate on relatively simple statistics, typically on the mean ¥ and
proportions p, which are also the most important for agricultural statistics;
these means and the totals (aggregates) are in the first column of Table 3.4.1.
Complesity of selections can take many forms, but we can converndently
separate siratified element sampling from all forms of clustered selections,
because these have very different and often drastic effects on sampling errors.x

The complexitiés of statistics are sorted into only three columns in Table
3.4.1, Subclass means and differences between them (5, — ¥,) are used
frequently in the critical snalysis of survey data; sampling errors for the
ste(¥, ~ ¥y, are available, fortunately, as simple extensions of the methods for
the ste(#). The effects of stratification (cell 2B) and of cluster sampling {(cell
20) are often drz;stica}ly different (and usually less) on Ste(?c = ¥} than on
ste(¥).” The effects on sampling errors of “more complex statistics, like ste(r,,)
apd‘aw(byx) are more complex; and these are also more difficult to compute
{Ch. 14).

3.6 CRITERIA FOR GOOD DESIGNS

Theoretical articles are often devoted to optimizing some single criterion.
However, in practice sampling statisticians usually rmust balance the
advantages and problems of several criterie, and that makes sample design
less clearcut, more difficult, but also more interesting. Thus none of the five
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criteria below uas absolute dominance over the others and all five eriteria must
be balanced for each design. That balancing is art rather than science, because

there is no criterion for choosing between the eriteria.

1. Probebility sampling to represent a defined frame population receives
prime consideration in the manual (2.2,3.1), although it is circumvented in
favor of other methods in some circumstances (2.3). The chosen frame
population oftea falls short of the desired target population in order to better
setisfy other criteria. For exumple, a strict probability sample of one district,
or a few of them, may be less desirable overall than a somewhat weaker
probability sample of the whole country.

2. Measurability vefers tc probability samples that permit the
computation, from the sample data, of valid and close estimates of sampling
errors. This is usually expressed in standard errors and in fmcﬁons derived
from them (CH. 14). These are the necessary bases for statistical inference
from sample statistics to population values, Nonmeasurable samples, even if
based on probability selections, caunot provide those objective measures of
error. For examole, selecting a single ciuster (district, province) will not yield
such measurabiity for national statisiics; and two or four districts’ are not
much better. A fairly large number of randomized replications identifiable in
the sample are needed for measurability (Ch. 14). On the other hand, random
replications of nonprobability samples Gf ever properly designed) could yield
sampling errors bat about unspecified values only.

8. Useful goals are most difficult to write sbout, because they seem most
obvious, but we must protect this crilerion against possible neglect.due i
pedantic emphasis on other criteria. A national sample of holders may justify
comprormises in other eriteria. These views openly admitted should apply not
only to sample design, but alse to other aspeets of survey design (1.1). For
example, problems of good measurement and daia collection may require
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restrictions on the spread of the sample. The timeliness of surveys must be an
important aspect of the goals, especially for agricultural surveys. The
sustainability of survey efforts should also be part of the grand overall strategy.

4. Feoasibility and procticality vefer to obstacles to achieving sampling
methods and procedure as designed and intended. Probability sampling cannct
be created by assumptions eithef about the selection design or about the
population. “Go and get a random sample” is not a practical instruction to
either field workers or statisticians. Selection models must be translated with
care into detailed procedures that have been trvied and found to work in past
surveys or in pretests conducted under the actual field conditions that will be
used in the sample survey. The field instructions must be simple, clear, and
practical; aleo fairly complete, yet brief enough to be remembered and used. It
cannot be entirely complete; judgment must be used about irregularities that
must be either treated as recognizable exceptions for the attention of experts,
or else to be tolerated as errors. The art of sampling invelves making the
practical design conform well, even if not perfectly, to the model for selection.
It concerns especially the proper construction and use of frames for selecting

units from the population into the sample (Ch. 4).

5. Efficiency und economy concern achieving the greaiest accuracy for
allowed cost; or (equally) achieving the surveys goals with minimum cost.
Total survey cost is a broader concept than merely minimizing the number of
élemem.s n, the aim of “efficiency” within the srs concepts of standard
statistical analysis. Accuracy is the inverse of the mean square error, including

the Bias® term plus the variance, whose inverse alone defines the precisiun.

Achieving maximal aceuracy (minimal MSE) for “allowed” total cost, or
minimal cost for “required” accuracy {or MSE), are two ways of stating the
aims of efficiency, depending on which of the two (cost or MBE) is “fixed.”
Minimizing the MSE=Variance + Bias® should be our aim, but often our
knowledge of Bias? is so poor that we must be satisfied with trying to minimize

the Variance alome. In this criterion of economy we should also include
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measures for the degrees of achieving those aims, because these are never

ympletely reached. The ideal optima (maxima or minima) can never be truly

attained, especially for multipurpose designs (CH. 9). However, comparisons of
relative economies for different designs can be done realistically and
approximately, and for many survey objectives, (aims, purposes). Here the
theoretical and practical aspects of the science and the “engineering” of sample

designs can be practiced to good effect.
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CHAPTER 4. SIMPLE LISTS AND COMPLEX FRAMES

4.1 SIMPLE LISTS AND COMPLEX FRAMESD

Good procedures from adeguate frames are pecessary for probability
selections (3.1). Finding or constructing and utilizing selection lists or other
frames is basic to practical survey procedures, A listing of identifications (like
nwmbers) of all N population elements may be the most desirable and simplest
kind of frame, but often more complex frames must be found or constructed.
Most lists and other frames have problems and practicing survey samplers
must overcome them skillfully and efficiently. Failure to recognize or deal
properly with such problems is a cormon cause of biased survey results. The
ability to discover and overcome such frame problems and t accomplish these
reasonably well and efficiently is perhaps the most important aspect of the
“art” of survey sampling.

"Population elements not be selected physically and directly ke balls
from an urn or cards from a deck. Instead we must select their identifving
numbers or names from & list or frame; and numbers can be selected more
conveniently from tables {or programs) of randorn pumbers. Thus when we
talk about a “list of elements” or a list of sampling units we refer to a listing of
their identifying numbers. (We simply consider finite, countable numbers;

' sampling from continuous lines, areas, i'o!umes, ete. can be reduced to finite
counts for adequate approximations, which then permit convenient selections

with random numbers.)

A simple list of all N elements, numbered 1 to N, is the simple ideal in
most minds and books when people think of random sampling. On such a
‘ perfect list each elerment appears separately, once, only once, and nothing else
appears on . In such a list a population of 11,111 elerents would be
numbersd 1 to 11,111, so that a five digit random number (10% would have
8/9ths blanks, However, the listed elements may come numbered 20,001 two
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31,111; or X+ 1 to K+N; or they may have any of the 100,000 numbers from
00,000 1o 99,999 and with the other 100,000—N nwmbers left blank, and these

" denote only rainor changes.

However, most lists have worse problems, discussed in later sections.
Selection procedures may be applied, instead of elements, to sampling unils
which may contain several, even many elements. For example, neat
numerical lists do not exist for most populations, such as farms or dwellings or
" people in most countries or counties. They would be too expensive 1o construct
and too expensive to cover in the field, and instead of lists we must use other
frames for selection. Thus, often we must consider a multistage seloction of
farms from segments, segments from ED's (Enumeration Districts), ED's from
counties (Ch. 8).

“Frame is a more general concept: it includes physical lists and also
procedures that can account for all the s#mpling units without the physical
effort of actually listing them. For example, in area sampling the frame may
consist of maps, but the frame can be constructed withour mapping the entire
population.” [Kish 1965, 2.8). “The frame consists of previously available
descriptions of the material in the form of maps, lists, directories, etc. from
which sample units may be constructed and a set of units selected” [UN 1950].
. “Frame: The materials or devices which delirit, identify, and allow sccess to
the elements of the target population. In a sample survey, the units of the
frame are the units to which the probability sampling scheme is applied. The
frame also includes any auxiliary information (measures of size, demographic
information) that is used for 1) special sampling techniques, such as
stratification and probability selection proportiona! to size sample selections; or
for 2) special estimation techniques, such as ratio or regression estimation.”
[Wright, 1987).

We note here three important examples of the use of frames. 1) Clustered
and multistage selections are commonly used instead of direct selection of
elements (Ch. 6). For example, adequate lists of farmers within each village
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may exist or may be constructed for a small gsample, but not for the entire
countr:#{ then a sample of villages may be selected in two or three stages
{districts and townships). Similarly, a frame for schooi children may consist of
school districts containing schools, then classes, then children. Note that at
. each stage only a sample (usually only a small portion) of the sampling units
needs to be prepared for the selection of the units of the next stage. Thus in a
large country instead of trying to list millions of farms, the sampler may need
to list only hundreds of units at each stage.

2) Aren sampling is commonly based on area frames for farms,
households, and other units that associate them uniguely, adequately and
feasibly with srea units like segments, villages, districts, counties ete. (Ch.
10). Stable and unique associations of farms, households etc. and of sampling
units with clearly defined areas are the basis for aren sampling, together with
available records, measures of size, data for stratification etc. for the units,
Thus area sampies ofien serve as convenient means for clustered and
multistage sampling. Av each stage the entire population is divided inw
sampling wnits frovn which a sample is selectod,

3) Dual frame and multiframe selections have been used sometimes in
agricultural and other surveys when one frame does not appear as obviously
both better and cheaper (Ch. 11). For example, a list of farms {or fam;xers)
from an agricultural census may be 2 less expensive frame, but it needs to be
supplemented by ares samples for new and missing farms. Area frames can
similarly supplement frames from other records, such as registered farmers,
telephone subscribers, ete. Furthermore, the imperfect lists may also contain
elements which are missed in avea frames; for example, small farms in cities
(poultry, eggs, vegerables) may be easily missed by area frames for farms. Or
a third frame may also be used to find those missed by both frames.



35
Special frame problems are discussed in more detail in chapters 6, 7,’ 10
and 11, postponed in order to continue here with more urgent matters. There
* are other treatments of frame problems [Kish 1965, 2.7, 11.1 —~ 11.6; Hansen,
Hurwitz, Madow I, Ch. 2; Wright and Tsao 1983]. However, in 4.2, 4.3, and

4.4 we call attention to solutions to three classes of problems.

4.2 FOUR FRAME PROBLEMS AND SOLUTIONS

We list in Table 4.2.1 the four possible contradictions of the rule of unique
identification of sampling units (and elements) with frame (and listing) units,
represented by L ~ U, Most (or ali?) frames contain one or more, sometimes
all four, of these imperfections; but in different quantities, as some frames are
better (closer to. the target popuiation) than others. More complicated
imperfections are possible as combinaﬁons of these four. For example, if
several farmers work jointly several farms, this ma;y appear as a combination
of duplicate listing with a cluster of units. But by providing general solutions to

the four hasic problems, we expect 1o help also with more complicated cases.

For each of the four problems stated here, solutions are proposed to
maintain or restore the intended probability, usually a constant rate f, that
imperfections in the frame (listed below! would disturb. Two of the proposed
remedies accept the inequality, but compensate for them with proper weights.
Also note that the “common sense” remedies often used for all four problems
would cause biases, which should be avoided.

1) Blonks or fomignelements ocour in manjr frames: the listings contain
no elements, because they expired or moved; or they were nonexistent or
nonmembers of the survey population. Nonmembers are often nurerous when
subpopulations (by age, sex, occupation etc.) are excluded either from the

selection or from the analysis.
Suppose the list contains N' = M+B listings, M population members plus

B that are blanks for various reasons, If the blanks cen not be excluded before
selection (as in 4.3), they must be rejected after the selection because they do
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not contribute to the sample. Sometimes a first phase “screening” process is
needed (Ch. 11). During subclass analysis, nonmerbers are also exciuded from

the sample base.

If a sampling rate f is applied to all the N listings, the number n = N of
listings can be specified and all M members also receive the same probability £
The expected sample size is m = M, but the actual sample size m’ becomes a
random variable, Were the seleétion process albered in order to fix an exact m,
the sampling probability would become random when M is unksown (Ch. 11).
It is usually better to fix the probability { and let m' vary é little, as it must in
most cases. '

Table 4.2.1. The Four Basic Deviations from Unigue Identification (I — U)
of Listing (Frame) Units (L) and Sampling Units (U)

Ideal lists one-to-one correspondence of units in frame and
L-U population

L ~ O |Blanks or foreign units; also extinction, emigration; also subclass
analysis.
No (D) units for listings.

L0 Duplicate (replicate) listings; dual (multiple) frames

LU Clusters of units with single listing: small clusters

O = U [Missing units, noncoverage, incomplete frames. No (D) listing for
units, .
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Avaid the common fallaey of accepting the next valid units as substitutes
for selected blanks. This procedure increases the selection probabilities of all
units in proportion to the number of blanks proceeding it. The “densities” of
blanks often differ in parts of the frame and can be associated with different

velues for the member units.

2)  Duplicate (replicate} listings would give sampling units selection
probabilities proportional to the number P, of listings. One may choose from
three alternative ways to deal with this problem, depending on the situation.

a) Unigue identification of a single listing for each element may be
defined before selection. For example, define the first (or last) selector as the
unigue selector, particularly if all listings for each unit are clear and
contiguous. Selections are confined to the specified unique listings; other
elements become blanks and treated as above. If the ordering of listings is not
simple and contiguous some unique feature may still be designated. For
example; selections of farmers from lstings of farm parcels may be
accomplished by associating each farmer uniguely with his largest parcelzy
Sometimes random choices with probabilities VP, may be substituted for
unique choices, when the replicates may be found or at least the size of Py
ascertained. (This problem differs from those in 4.4, where equal probabilities

for P, elements in single unite must be assured.)

. If selections must be first completed. elimination of replicates from the
entire population may bave to be postponed. This modification may be needed

. when tbe replicates are scattered over the population, rather than contiguous.
This also occurs when the replicates sccur in other frames in multiframe
selections (11.1). But even this procedure is less laborious than eliminating all
replications from the entire list {4.3).

b) Weighting each selection by the inverse 1/P; of its probability of
selection should be used in cases when all P; listings must be accepted because
unique identification does not seem feasible. This may occur especially when

the P, are established only after expensive interviews or measurements. So,
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although equal selection probabilities are abandoned, equal estimation weights
are restored. Weighting has two disadvantages: greater complexity of

analysis and usually increases in variances (Ch. 12),

Avoid the common follaey that eliminating duplicate listings from the
sample selections can deal with the problem of unequal probabilities. If the
sampling rate is 1/1000, the chance that both listings of a duplicated element

get selected is one in a million only (with srs assumptions).

8) Clusters of elements (or sampling units) can be associated with single
listings. Suppose this problem is not common and the clusters are small. For
example, listings of dwellings may contain occasional “duplex” dwellings; some
) households may have two holders or two women of childbearing age; a list of
farms may contain & small proportion that have split into two farm operations.
But if clusters are common and large it is best to resort to formal cluster
sampling (Ch. 6).

Avoid the common belief that selecting at random one sampling unit
maintains the equal probabilities for selecting the listings, after the selection
factor 1/p; is introduced (4.4). Choose the most feasible of three alternative

ways of dealing with these occasional small clusters.

a) Select one of the P, elemenis ot random with 1/P; but then compensate
by weighting it with P,. Weighting avoids the bias of the “common sense”
fallacy. But this procedure has three disadvantages: the subselection may be
difficult in the field; the analysis is complicated by weighting; and variances are
also increased, especially if the weights and their proportions aré not small
(12.6). '

b) Include oll elements identified with euch lsting, when clusters are
neither large nor common. This is usually true for the three examples above:
dwellings, wormnen and farms. This is often the best, most practical procedure,

and it is the simplest because it preserves the probabilities, often a constant f,
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originally assigned to the listings. Although variances of meauns per element
may be increased due to the clustered selection, these increases will be slight

when the clusters are small and not common.

c) R;ziist a larger sample and then subselect an epsem of elements. If
small clusters are common this may produce a final epsem of elements for a
modest expense. For example, list the adults from a preliminary epsem sample
of dwellings to produce about 3n adults, and from this subselect with { = 1/3 to
obtain about n adults.

4) Missing elements, also called noncoverage, undercount 'cn;i incomplete
frames, pose some of the most serious and difficult problems for many
agricultural and other surveys. Though theoreﬁcally simple and similar to
nonresponse, in practice they can be even more troublesome because even their
magnitude may be unknown (15.3). The “common-sense solution” of taking
larger or supplemental samples fails, because they only increase the already
covered population, but these may differ significantly from the noncovered.
There are three alternative remedies, but often none of them are feasible,

unfortunately.

a) Supplements with special procedures may be added with smalle

samples in separate strata (11.2)., These procedures should be significantly
better, but alse more expensive than the main sample. Yet to be useful these
subsamples should be affordable and also yield accurate results in order to
either measure with comparisons the effect of moncoverage, or preferably to
correct the sample results. Because such contrary and difficult conditions are
seldom met, these desirable methods are only used on censuses and very large

samples.

b} -Linking procedures or half—open iqteruals offer appealing alternatives
when the listing can be viewed and applied in linear fashion. In addition to the
selected l—-th listing also investigate and include any unlisted hence “missing”
sampling units up to, but not includfng, the (I+ 1th listing. This procedure
assigns to those missing sampling units between the listings numbered | and
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141 the same known selection probability assigned tw the !—th listing. This
procedure can be successful sometimes, under proper conditions. The linear
order should be made feasible for the enumerators. The extrs instruction
should not be too cumbersome for them; or the burden may be reduced with
sub—sampling. The missing sampling units should be well scattered, so that

large clusters of them are not picked up at single locations.

¢} Estimation of the size and effects of noncoverage may be useful. This
requires skilled use of reliable and available auxiliary dats in the estimation
process., Actually using ratio, regression and post—stratified estimates may
bring great benefits for reducing the effects of noncoverage (12.8).

" 4.3 AVOIDING FRAME PROBLEMS

There are also three general procedures for avoiding frame problems, and

one of these may be useful in some situations,
T

1) Ignore and disregard the problem if we may be convinced thar the
effects are small compared to other errors and if the corrections would be too
expensive compared to its results. For some small agricultural surveys. for
example, it would be too expensive to search city areas for missing farms,
especially for crops like grains. From other studies and from external evidence
we may be convinced and also convince others that the 'problem is small
enough, compared to other biases and to sampling variances, to be ignored. A
statement about the probable magnitude of the problem should be added to the
deseription of the sample (15.3). '

2) Redefine the population to fit the frame, but only if’ the difference can
be ignored {as in 1 above), or if the redefined population is actually preferred
(a5 in examples 1,2,3 in 4.4). This should be avoided if the sample results
would be serivusly deflected from the aims of the study, We may accept target
populations reduced by deliberate exclysions of regions small in population
(through large in areas) when the bias caused by the exclusions would be
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outweighed by the cost of covering those areas. We then deliberately exclude
those areas, with explicit redefinition of the target population, and preferably

with some estimates of the magnitude of the exclusion and of its effects.

3) Correct the entire populotion list, eliminating blanks and replicate

listings, and splitting clusters. Finding missing units may be difficult but

perhaps not necessary. Clerical correction may be less expénsive, for even tens
of thousands of simple records, than technical corrections would be; with
machine treatment of tapes even populations in the millions may be treated.
But hand treatment of lists running into the millions may be so costly that
clerica’l routine roust be replaced by skill. Such clerical labor may be reduced
by introducing multistege sumpling or multiphase sampling w reduce the size of
the population being treated. It would be too difficult to explore here all the

possible ramifications of these possibilities.

4.4 FRAMES WITH UNEQUAL PROBABILITIES

Eight situations are described below as distinct problems with separate
treatments, but they have basic similarities; therefore this joint treatment
would be heuristic and instructive. From the common basic principles the
reader can more readily learn to treat other similar problems as well; and there
are many oihers. These situations resemble partly those of “replicated
'listings” in 4.2.2, which we symbolized with (L — U -~ L) to show two (or
more) listings for one sampling unit. But in the nine situations below both the
frequency and the size of replicate listings can often be greater than conjectured
in 4.2.2. Furthermore, quite often the listings may also be elements of
meaningful populations so that (¢ — U ~— e) may better symbolize the

situations below, with e for events and U for units.

1) Sampling contacts with o focility. These may refer to sampling the
distinet visits to offices (e.g. agriculiural agents), stores (e.g. fertilizer and seed
stores), clinics, hospitals, ibraries, doctors ete. Shares in companies, which can

be used to sample shareholders with several or many shares, present similar
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problems. Such samples result in biases because the contacts (visits, shares
ete.) are not evenly distributed: units with more contacts (or shares) are
overrepresented, whereas others receive reduced representation or none at all,
Should all units (U;) receive equal representation in the selection or in the
esﬁmaﬁon? Or should visits be accepted as the selection units, thus giving
equal representation to contacts (g). This also gives representation to units
proportional to the number of contacts (e;) for each unit (U;); and this amounts
1o a “redefinition of the population” (4.3.2).

2} Size of family (or group)as selection fuctor. Bamples of families (U)
hawe been drawn by selecting from lists of children (e) in schools or from lists of
residents in cities. Larger familiés would be over-represented in those
selections and estimates for families would be biased toward large families,
unfess corrected by weighting. [See Kish 1987, 7.4 for sivuations 1,2,5].

3) Sempling purcels for holdings. Selections from lits of farm parcels
{e} would obtain samples of holdings (U) with overrepresentation of holdings
with many parcels. This situstion resembles the preceding two ecases. For
some purposes statistics based on parcels would be adequate, but for most
purposes statistics based on holdi are needed. We need one of the solutions
for replicate fistings (4.2.2). See also 11.5.

4) Selection grid with random points. Selection grids with eyuidistant
pomt.s can be placed on maps with random two-dimensional choices; thus
every point on detailed maps has the same probability of selection. On the
maps the location of each farm has been uniquely pinpointed (11.3). Procedure
A: “Take the 4 {or m) farms nearest to each random point”. Procedure B:
“Take all farms within a radius of 2 km. from each random point®, A is biased
in favor of large farms, which have greater probabilities of having their
identifying point near a random point. B is unbiased, though it permits
varigtion in the sample size ai each point. This is 2 two—dimensional
extension of the problem of blanks in 4.2.1, It is also an example of problems
 arising from fized sample sizes (7.7); and s0 are situations 6 and 7.
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5) Waiting times. This is a farniliar problem at all kinde of lines and
queues for waiting. At busy airports, have you noticed thet most check~in
counters have only 1 or 2 persons, but you and we usually find ourselves in
long queues? This is the natural result of ubequal queues. Busses are
scheduled for similar arrival times, but in big cities they arrive at unegual
intervals due to traffic delays. The longer the delay the longer the queue and
most people find themselves in the longer lines. The average waiting time for
riders becomes much longer than the average and scheduled intervals between
buses [Kish 1987, 7.4}

6] Fixed sample sizes from unequal clusters. When clusters are selected
with equal probabilities £ and then subsamples of fixed size b are selected from
each, the probability of selection in the two stages becomes {;x(d/Nej, inversely
preportional to the variable cluster sizeg Na. Needless and inefficient
deviations from equal probabilities occur in many situations. a) Fixed
suhsarzipies(of farms from unequal segments; b) Fized number of dwellings
from blocks (or“buildings) of unequal sizes; ¢) Fixed number of émployees from
firms of umegual sizes. Two stage (or multistage) seleetion with FPS
(probability proportional to size) yields procedures to keep the sizes of
subsamples approximately constant, yet théy preserve the constant overall
sampiing rate § (7.7). Two stages of selection are represented by (M_/bF) z
®/M,) = I/F = f, where the M,, are “measures of size” for the clusters.

Selecting & single adult from the N_ adults in households that were
selected with equal rates f, seems theoretically a similer problern: the selection
probabilities of adults become f/N,, inversely proportional to be number of
adults N in the household. Weighting with N, restores unbissedness in the
estimates. The practical results are not serious because N_ is 1, 2 or 3 and

seldom larger (11.4).

7 Telephone sampling with random digit dialing. Telephone numbers of
seven digits may be represented by AAA — BBrr, where the rr denote clusters
100 numbers, many of which may be blanks. Thus 100 = N_+B, digits
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represent N, occupied telephone numbers and Bo represent unoccupied blanks.
These could also represent pages of a register with 100 lines of which N are
registered farms and B, are blank lnes, I we select random digits, the
chances of hitting occupied number will be proporticnal to N, If t;heﬁ constant
sizes of subsamples b are selected the overall selection rate becomes in two
stages (N /bF) x (b/N) = 1/F = f,

We may summarize briefly the problems of weighting that will be treated
in 12.5. In situations 1,2,3,4 the selection of units was proportional to
numbers of elements, or contacts as events symbolized with e, for the ith unit
value U;. The simple mean would estimate the element weighted mean ¥ =
£o,U/Se;; but to get the mean of units ¥ = ZUYN calls for weights
proportional to le, On the contrary in 6,7,8 if the units are selected with
egual probabilitiés f, to produce the element 7“, we need to use the weights‘ei.
When they must be used the weights: 1) must be known for all selected units;

'2) tend w incroase variances per selection; 3) tend to increase the complexities

of analysis,

8) Observational units of unegual sizes. This pro"t')lem represents
situations contrary to those of 1 to 7: where it may be preferable to depart
from simple eqizal probabilities for units for the sake of betier representation
a.x;d efficiency.

- Large units of variable sizes can become observational units as well as
sampling units when a single measurement Y is used to characterize it.
Examples: &) Y, measures the guality of drinking water, or climate, or
available primary school ete, in village o5 b) Y, measures the quality of science
of mathematics teaching in secondary school o; ¢) Y, is the size, or altitude, or
age of ity o. In most of these cases it is likely that instead of the simple unit
mean Y, = IV /A of the A units, it would be better to estimate ¥, =
INY JZN,, the mesn weighted by the numbers of elements in the units. The
relative difference between the two means can be large: (¥, - Y)/¥, =
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R, CoCy. where R, is the correlation between sizes N, and values Y, also C,
and C, are coefficients of variation of the two variables. PPS selection of units
is useful [Kish 1987, 7.5; Kish 1965, 11.6].
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CHAPTER 5. ELEMENT SAMPLING

5.1 SELECTING ELEMENTS WITHOUT CLUSTERING

The populations and their elements should be defined by the aims of
survey analysis. The next most basic question is: May the selection be made
directly and confined to the elements, or must clusters of elements serve as
sampling units? Because clustering increases both the complexities of analysis
and the variances per element, it should be used only when needed, and it is
often needed for agricultural surveys (Ch. 6). For element sompling to be
economicnl, we need two things: frst, adequate listings of the elements, f’airly‘
complete and Vupmw«»datze, must be available for selection. Second, locating
the elements and collecting the data individually must be feasible and

economical..

Later sections of this chapter describe four methods for selecting
elements, but some other aspects of elemem sampling are left for later
chapters. Estimation methods with ratio and regression estimates and with
poststratification are treated in 12.3. Two phase sumpling for screening and for
rare iterns is discussed in 12.4. Dual frame selection may use element samples

from one frame and supplement it with a clustered area sampling frame (11.1).

In this section we would like to describe some situations where element
sampling may be feasible, and with special attention to agricultural surveys,

farmers, and to households.

1. In some countries telephone ownership is over 90 percent (in 1987);
also selecting telephone numbers, then identifying the defined population, and
then obtaining “high enough” and “good enough” responses can be done fairly
well, There exist many articles on this subject that it is growing and changing
rapidly; situations differ greatly between populations and subjects, hence no
review will be attempted here [Groves and Kahn 1879; Groves et al,, 1988]
Fer DC's telephone sampling lies only in the future for general agricultural
surveys, but they may be used for some special populations on special lists.
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2. Some registers contain interesting data that can be sampled directly
from the records without the need for obtaining data from the individuals.
From data cumulated in registers even longitudinal statistics may be computed.
Samples of population registers and health records have been used to produce
interesting statistics.

3. Members of voluntary groups and organizations are often listed with
clear and current addresses. They may be willing and able to answer mailed
questionnaires. Or they may reside in a relatively small area so they may be
interviewed with low location costs; for example, farmers in marketing or
buying cooperatives may be sampled.

4. In some countries, mostly in Northern Europe, complete and up~—to—
date registers exist for the general population, with good, current addresses.
On many mail surveys, with short guestionnaires on non-—sensitive subjects,
good responses have been obtained from largely literate and cooperative
pppulations, who are able and willing to respond in large proportions by mail.

4lso in these countries household surveys are expensive,

§ I a small country, or state, or province, or city, -has a good
.population register, the sample may be drawn from it, énd the sample {(of
households, persons, etc) can be located and visited for interviews or

observations without unduly great location costs.

6. Districts or cities that are not too large may be completely listed for
element sampling for reasonable, though not negligible, cost. Suppose, for
example, that a sample of n = 1000 households is wanted from a district of
10,000 households (or 50,000 persons); the sampling interval would be 10 and
the cost of cheaply listing 10 households per interviewed housebeld can be
made reasonable. However, for a sample of 1000 from a state of 100,000 or
1,000,000 households, those ratios of sampling and of listing to interviews (100
or 1000) would become insuppottai:le; hence the listings should be sampled

- also,
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5.2 SIMPLE RANDOM SAMPLING (SRS)

The status of SRS in the fieid of survey sampling involves confusion and
contradictions: SRS is basic in the theory of sampling, although it is and
should be seldom used in practice for selecting samples {outside of introductory
classrooms and simulation exercises), For the mathematics of statistics and of
sampling the independence between selecied elements is a powerful tool; it
appears in assumption of “LLD., independently and identically distributed
random verisbles”; also in “selections from a well mized urn,” ete. All classic
statistics are based on these sssumptions; and sampling theory also begins
with them. But in practical survey Samples various restrictions are used either
to veduce variances (as with strafification) or to reduce vosts {(as with
clustering). Nevertheless SRS serves as a basic standard, as in the
denominator of “design effects” later. Furthermore, the concept of independent
replications is basic to all measurements of sampling errors. However, natural
populations do not exist in random siates, nor can they be physically “well
mixed” like the balls in the urns of the textbooks. Seletion with 8RS would
vield the independence of elements in the sample that is needed and assumed

{ofien unstated) by basic theory,
4. Procedures for SRS,

A simple operational procedure reads: From a good table of random

digi& select with egual probability n different ction numbers, corresponding
10 n of the N listing numbers of the population elements. The n listings selected
from the list, on which each of the N elements appears once, uniguely identifies
n different elements for the sample. At any (k + 1)ih selection all the (N - k)
unselected elements have equal 1/(N ~ k) probabilities of selecti but all the
k selected numbers receive zero probability (like “blanks,” discussed in 4). The

words different and unselected sbove mean that no element may be selected
twice, and denote SRS WITHOUT replatement.
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In SRS WITH replacement, n random numbers are drawn, each from 1 o
N; all N elements receive the same probability /N on each of the n selections.
The elements may be reselected on any draw and the words “different” and
“unselected” are omitted from the definition above. Thus any elerneni may
appear not only once, but twice, seldorn three or more times (though
theoretically even n times) in the sample. Thus in SRS WITHOUT
replacement, the selection receives some resiriction; since SRS WITH
replacement yvemains unrestricted, we may name it wnrestricied random
sampling, or URS. In SRS WITHOUT replacement sampling each of the Cf;" =

NUY(N ~ n)in! possible corabinations has the same equal pmbability of selection;

but this theoretical definition does not lead to a practical procedure. in
unrestricted URS sampling there exist N” theoretically possible ourcomes, all
different permutations. URS has somewhat higher véz’iance (for the same n/lN)
by the factor (1 — n/N) than SRS, because the samples may contain the same
elements more than once. If the replicates are eliminated from the sample, the
sample size becomes a random variable; but the fixed size n can be restored

with a supplement, which can be designed before selection. [Kish 1865, Ch.2]

Bernouwlli sumpling is a name for selection procedures that uow seem
convenient with electronic computers: Each of the N listings of elemeunts
receives independently in its turn the same f = n/N probability of selection.
This method would sllow the sample size to becowe highly varisble, but

computing programs can now deal with this problem by changing f at esch
4 selection; or & rate f* > f can be set and the excess eliminated with equal
prdgahility £, This }gields' n selections without duplicates and with { = p/N
for each of the N elements; and the equivalent of an SRS

Subclasses in the sample “inherit” the SRS properties of the entire
sample. A subclass n, of the sample is equivalent to having selected n_ from
the N, elements of the subpopulation (domain), EXCEPT that: 1) the
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subsample size n, becomes a random variable and 2) the population size N,
may remain unknown, as with sampling from a list with blanks (4.2), These
theoretical problems may be neglected if o, is not small.

Models for SRS are often assumed without actually selecting an SRS.
The assumptions of LLD. are common in statistics and they also occur in the
theory of sampling [Kish 1987, 1.8]. But actually creating a “well mixed urn”
of listing numbers to identify elements is “never” practical and populations are
“never” in truly random order. In general we should be cautious with
assurnptions of SRE. When we read “simple random sampling” for deseribing a
survey sample we may well question either the description, or the wisdom of
the procedure, or both. However, there exist situations where such
assumptions may be good approximations, especially for small samples whose
sampling errors probably dominate the small biases caused by SRS
assumptions. A few examples can illustrate situations where the convenience
of the assumption may overcome our caution. a) Day of birth may serve as a
convenient identifier on some lists that are approximately randux;z. b) Day of
arrival at a facility may also select groups, which may be accepted as unbiased
after an investigation. ¢} The last digits (2,3 or 4 of them) of: social insurance
numbers may be assigned {alm at random; but the first digits may be

{weak) stratifiers, But telephone numbers, auto licenses and such may be

" subject to individual choices, hence not acceptable as random digits. d)
Members of small subclasses from stratified (PRES) selections approach SRS
properties (5.5).

The population size N' is unknown in some situstions with B blanks
among the N = N' + B' listings. Often with a fixed sampling rate (probability)
of f, the sample size n’ = N’ will be‘ allowed to become a random variable; that
retaing the “known probability” { and the “unbiased estimator” E®'/) = N°.
That variation often has probably no important practical consequences, except
if o' or E{n") is allowed to become too small; and this is preferable to fixing n
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and allowing * to vary., But if n'is fixed, I' = n/N’ becomes a random variable
and we lack a “known” probability, although we still have equal selection
probabilities.

B. Descriptive Statistics from SRS,

SRS is an epsem selection and self—weighting: that is, the simple
statistics based on equally weighted (Le., unweighted) sample cases, have
desirable properties. The simple sample total is the most basic statistic, and
uses weights of 1:

From y with constant factors we obtain the sample statstics (estiraators) for
the mean and the total (aggregate), with weights of n and n/N:
¥=yh= Ty and T = y/f = Nym. (5.2.1)
These estimators are simple and also “unbiased™
Ef=F and ED) =Y.
These properties also hold for element variances and for covariances terms:
Eis?) = 82 and Elsy,) = Syy - (5.2.2)

Here 5§ = (L jyjz - y¥m)ftn — 1) as usual, and Sg is similar with N and
Y instead of n and y; s, = (Dyx; — yemiin ~ 1)

Some other descriptive statistics, such as the standard deviations s, and
ratios of random variables are not technically *unbiased estimators” of their
pepulation values 8y, but they are technically “consistent” and they are good,
and commonly used statistics, For example, the cosfficients of correlation and
of regression: ry, = 8y./8,8, and by, = syxfsﬁ (Ch. L12} are such consistent

estimators of their population equivalents. -
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For subclosses the sample mean ¥, = y, /o, is also clearly useful, unless
it is unstoble because n, is too small, because it is a random variable. But for
estimating suliclass aggregates, instead of Ya =y, /f the ratio estimators N, ¥,
maybe preferable, because these have lower varisnces. In general, radio
estimators may be used to impfcve SRS selections (Ch, 12).

C. Inferential Statistics from SRS,

The descriptive statistics in B, such as §, ¥ and sZ, have general validity
for many kinds of designe and depend only on the individual probabilities P; of
selecting the sample elements. In contrast, the inferential statistics in this part
C depend on the joint selection i:;robabilities Py (pairwise for population
elements i and j). These formulas reguire independent selections and are
strictly valid only for SRS and URS respectively.

The population value and its sample estimator for the variance for
sample means (§) are:

Var(¥) = (1 = S¥/n and var(y) = (1 — Hs¥n . (5.2.3)

This sample variance, like s?,, is also a technically unbiased estimator of

the variance: Elvar($)] = Var(§). This again, as for Bys does not hoid strictly,

technically for the standard error, because Elste(¥)) = Stel(§) where: ste(§) =
Vvar®) = 1 = Dsy/\/n and Ste® = NarG) = AT = DS,/ /.

" The theoretital value of ste(¥) is that, with assumptions of SRS,

mathematica! derivation car show [Eish 1965, 2.8B; Cochran 1877, 2.5, 2.9]
that Var(¥) estimates the variance of the sarmpling distribution of ¥

El(1 - DS}n] = £ P§, — EFPF.
The tmportant practical value of ste(¥) is that, because it is a good estimator of

Ste(®), it can be used (for SRS selections) to construct inferential statistics
{probability statements, confidence intervals) like ¥ & tyste(d).

For URS the populstion variance of the mean and its unbissed sample
gstimate are:
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Var(y) = ¢2/n and var(y) = siin. (5.2.4)

The variance of SRS is less than these by the factor (1 ~ f), where f =
n/N, the “finite population correction” (FPC). This factor arises in the
mathematical derivation from the lack of complete independence in ruling out
replicate selections. It is usually disregarded either because it is small or for
théoretical reasons. Other modifications of S%n, which we call “&esign
effects” and express as DZSz!n, will be seen as much more important,
Stratification will be seen with D? < 1 1o reduce variances slightly in element
sampling (5.5), and cluster sampling to introduce often large increases with
D? > 1(6.6).

Computing formulas for variances begm conveniently for the sample sum
¥y = Bvy
var(y) = (n £37 = ¥/ -~ 1) = ns? . (5.2.5)
Then since var(y) = vai(y/n) = var(y)/n®, we may use:
var(y) = (nL jyjz - yz)fnz(n - 1) = sf,/n . (5.2.6)
For the element variances we use var(yin = sf‘,/n. For the agg;egabe ¢ = Ny
we ¢an use: '
var(¥) = var(Ny) = Nivar() = N%¥m . (6.2.7
These serve for URS, however, for SRS with the FPC we may use var(y) =
- f‘)sﬁ/n as noted above,

Proportions p = § are used frequently as sample means to estimate
population proportions (means) P = ¥, when the variables “y” are dichotomies
and the Y; takes only the values 0 or 1; and o = PQ. The computing
formulas for the variances become simple because y = np; and then var(np) =
L y? = i ~ 1) = (0% - n%pH/a - 1) = n’pg/in ~ 1) = ns]. Then
var(np)/n® = var(p) = py/lo — 1)
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Cocﬁ‘icien:s of variation {c.v.) and relvorionces are used sometimes as
messures of relative errors: the units of measurement are removed by dividing
by the mean §. Thus for element values ¢, = s,/7 is used to estimate 8,/¥,
and cf, = sﬁ/?z to estimate Cg = Sff?z. For the distribution of the mean (F)

we have:
e.v.(3) = ste(F)/¥ to estimate C.V.G) = Bte3)VY ,
and
ev.X(5) = varGyst o estimate CViF = Var@®/F2. (528

These relative errors are useful for chiefly positive guantities (like areas of
holdings, yields, income), but not at all for variables which can be negative and

have ¥ near zero.

Subclasses of SRS are algo SRS-and the variance for the mean' ¥, of a
subclass of size n, has var(y,) = (1 — Ds g this formula neglects the -
difference between { and possible distiher £, for subclasses. The variance for
the difference of two means based on distinct (independent) subclasses n, and
ny, equals the sum of the two variances. Those variances are greater than for
the entire sample by the facters nri/‘rxc for a subclass and (n/n, + nim) for a
difference.

However, the mean for the difference (¥ — %) between two variables
based on the‘same sample n (e.g., before/after differences) benefits from the
effects of the covariance on the variance: var(§ ~ &) = sﬁ/u + s2m ~ 28y, /n
= var{d), where d; = y; — x;. This arithmetic identity also carries useful
content.

D.  The Design of Sample Sizes for SRS.

1. “Will 2 sample of five percent be large enough?”
2. “What sample size n should we take?”

3.  *With a sample size n, how large will be the sampling errors?”
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The ordering of these questions represent how commonly they are asked:
the first is the most common, alse the least sensible. First, the sampling error
depends roore on the sample size, and bardly at all on the sampling percentage
or fraction of the population,

Second, the needed sample size depends on the required sampling errors;
but most surveys are multipurpose and the precisions for the many aims
usually differ greatly. For these reasons the design of sample sizes is mostly
postponed to chapter § on “Multipurpese Designs” and only briefly treated

here.

Third, the “permissible sampling errors” or the “required precisions” for
the many survey sims are not usually available or realistically obtainable.
Much more reslistie and cormrmon is to have a permissible budget Bmit and from-
that to estimate a total feld and processing cost.. That may be stated a5 C =
fn, then from o reasonable and realistic cost per element €, the permissible CR =
n can be obtained. Then from the 8RS variance we get {’ar(,?g} = é‘%}ng, The
subseript g denotes that several (or many) aime should be represented for most
surveys amd that these can differ greatly. Especially, the ny for subclasses
may be 1/10 or 1/100 of the total sample:

The element variances gi in the design must be guessed, as noted by the
tilda (~), with one of more of the several methods below. We first note with
comfort that errors in guessing gé do not bias the sample estiinaws of the true
values of SZ, because those are based on values of the sz computed from the
aetual values, Underestimating §»§ result in larger values of sﬁ and of ste(F,)

than we hoped and designed for, but not in biases.

1) Past surveys with similar vam‘a;)les may be used either directly from
publicatidm and reports or from the advice of experts. 2) Models of the s;xrvey
variables from experts in the subject matter can be most useful (Ch. 14). From
reasonable guesses of the coefficient of variation C, = Sﬁ ¢ and of ¥, one may
guess 5, = Cng well enough. The values of C, for domains can often be
guessed reasonably well from the C for the entire population. 3) Proportions



58

are commonly used in surveys, and Sx = \/PgQg = \/Pg(l ZF varies only
slightly even for moderate variation in Pg, especially between 0.8 and 0.7 for
P,. Therefore, even mediocre guesses for P can yield useful values for Sg. 4)
Pilot studies would seern like reasonable sources for Sz’ but in practice most
studies are too small and too hurried to support a large enough pilot study tw
yield useful eatimates of Sg. Results from small pilots are almost useless, if
they are less reliabie than guesses from the first three alternatives,

With reasonable guesses aboui S§ we can use these px;eiiminary
variances, n; and f'g = n;/N:
Var,) = 82n, and n, = §UVar(,) . (5.2.9)
If the ﬁrﬁbe population correction FPC = (1 = {) must be taken into
account, the preliminary n; can be corrected to the needed ng and fg:
Var@,) = (1 - N8¥n; and n, = n /(1 + ng/N) . (5.2.10)
The ng here refers to desired sample sizes for the entire SRS sémple, but

those desired n, will generally vary between variables, because of different

guessed wvalues 52, but even more because of different “needed” variances

Var(:?g) for different variables. Furthersm in complex designs, “design

effects” DZ should also be guessed, with D? < 1 slightly for stratified element
samples, and D? > 1 for clustered samples. Even greater variations are
introduced by designing for domains of the sample (Ch. 8).

In my view, the usual increasing ordering of difficulties in guessing design
parameters is as follows:

1. & the cost per element of collecting and processing data.

2. f)i;h the “design effects”, but this may be varying and difficult in
clustering.

St}

§§, the element variances for diverse variables.
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4. {"ar(j\?g) and éte@g , the “desired precision” or permissible sampling errors
are most difficult to state with any reasonable dependability and especially
for several (many) survey aims. These can vary a great deal especially

when subclass sizes B vary greatly (Ch. 9).

5.3 STRATIFIED RANDOM ELEMENT SAMPLING

Stratification is treated in more detail in 6.2 under clusiered sampling,
because the gains from stratification are usually greater and more imporiant
there. But the genef*a] principles ave similar for both element and clusier
sampiiné. Briefly stated, stratification consists of four steps. 1) The entire
pbpulation of sarapling units is divided into distinct subpopulations called strata.
2) Separate samples are selected independently from each stratum. 3) The
separate statistics (means, propertions, ete..) from each stratum are weighted
and combined into overall estimates. d) Varignces for thosc estimsaies sre
weighted and added inte overall variances. However, modified simplifications

of steps 1, 2 and 3 are often feasible and convenient.

Four principal motivations for stratification, alone or together, account
for the common use of stratification both for element sempling and for
clustered, multistage samples. 1) Stratification reduces varionces for given
effort, measured either in the size of the sample or in costs. Variances may be
réduced either with proportionate stratification (5.4 and 5.5), or contrariwise
with deliberately disproportionate “optimal” allocation (5.6). These are the
reasons justified with formulas in theory, but in practice the other three
reasons may sometimes be even more important. 2) Stratification may be used
for safety, comfort, insurance against suffering from distorted random selections.
Because this sim is difficuli to formalize, it has been ignored in theory, except
for “balanced” or “controlled” selections (7.2). 3) 'Stritiﬁcaﬁon focilitates
allocations to domains of desired sample sizes, ofien proportionate, but
especially when disproportionate allocations are desired. Domains are
subpopulations that mey contain several, even many, strats; for example, large
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regions or provinces may be divided into many strats before selections (8.1),
4y Stratification facilitates using different methods and procedures for diverse
portions of the sample. For example, for selecting farms in the metropelitan
avea the sampling methods should differ from those in the rural srea. Also,
farmers may live in villages in some provinces but in the open country in
others and therefore different procedure‘s may be suited t each.

Weighted meoans. Fundamentally, means (and other statistics) from
stratified samples represent weighted combinations of separate means:

y' = 2kahv = B Nh"ih/N B (6.3.1)

Capital W, represent relative weights, so that £ Wy = 1, and the
wights may be fresly chosen to satisfy the needs of sybstantive analysis. The
weights W, = Ny/N signify common situations where numbers Ny, of elements
in the strate sre used for weights. Note that the sampling methods used to
obtain the stratum means ¥y, are not specified, and even the selection methods
may differ between strata. If the ¥, are unbiased estimates of the stratum
means ¥y, then the combined sample mean £ W,¥, is also an unbiased
estimate of £ W, ¥,. With separate, independent selections from the strata,
there are no covariances between strata, hence the variance for the combined
mean is the simple sum of the stratum variances, Wivar(y,):

var(E W, 5,) = £ Wivar(,) . (5.8.2)

This is merely a general expression for variances of weighted means. For

separate SRS selections within strata, the combined variance becomes the
weighted sum of the stratum variances WE(1 ~ fy)s2/n,:

var(E W, 9,) = TWEQ ~ f)sm, . (5.3.8)

The sizes of the ny, have not been specified and they can be arbitrary.

They rmay be determined by availability of data, and also by size requirements

for separate domains, We distinguish two special, important allocations:
proportional selections (5.4) and disproportionate “optimal allocation” (5.8).



59
Often the mesans ¥y, are proportions py, and then

Py = EWyp, and var(p,) = EWEQ = fpuap/n, = 1), (5.8.4)
and with the p, available this formula saves having to compute the values of
st

For estimating totals (aggregates) with the weights N, we may use
¥ = ©N,3, or ENyp, and var(EN,7,) = ENEQ - f)efm,, . (5.3.5)

For simple expansion totals ny/fy, may be substituted for the N in
Sy/f, but this estimator is usually not as good as £ N, ¥, (12.8).

5.4 PROPORTIONATE STRATIFIED RANDOM ELEMENT SAMPLING
(PRESy ) v ’ )

Theoretically  PRES may be viewed as mersly one ape;:ial kind of
allocation (5.6) for stratified element sampling in general (5.8}, but in praetice
t;his is probably the most commonly used among all methods of element
sampling. It is also the most popularly known sampling method:- it is probably
what people mean when they think ef “representative samples,” which are
“miniatures of the population” in which different portions of the population are
“properly represented.”

We can also assign to it three technical advantages in comparison with
other methods of random element sampling. Firet, it is often simple to select,
sometimes even simpler than SRS. It may be especially simple when
approximated with systematic selection applied to an already stratified listing
of population elements (5.5). Second, it helps to satisfy the sofety motivetion for
stratification: to guard against unususl or extreme results from simple random
selections. Third, PRES may often yield allocations that approximate (close
enough) reasonable compromises between the conflicting “optimal” allocations
of multipurpose designs (9.5)
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We may take two distinet views of PRES which are mathematically
equivalent. A) In PRES the sampling fraction fy, within all strata are made
equal: f, = ffor all strata (h), where f}, = n,/N, = { = n/N. Thus the overall
uniform sampling rate f = n/N is spplied to each stratum size Ny, to obtain the
sample sizes in the strata: ny, = N, = [Ny, B) In PRES the sample sizes vy,
represent proportionately the population sizes: ny/m = Ny/N for all strata (h).
Thus the sample is made into a “miniature” representation of the population.

These. proportionalitics make some simplifications possible in formulas
for PRES:

Fores = L Np/MNFy, = L (ny/njyyiny, = Epyy/n = nljyin, (6.4.1)

because £ .y, = © hE‘jyj = L iy, the two step summation, within and over
strate, is replaced by simple summation over all n cases. Thus PRES is “self—
weighting”, like other epsem samples, because Wy, = Np/N = n,/n, population

- weights egual the sample weights. For proportions froms PRES the self-
weighting mean is sivaply p. But it is also possible to introduce other weights
"Wy, for improved estimators with ratio and other methods (12.3).

Whereas the self—»weighting means for PRES may be computed with 2
single swmmation, the variances must still be computed sepsrately within
strata: '

6.4.2)
1-f 1~ n yi
- 1§ h b
var(ypms) B -£~2th§ = u?%nhsﬁ = w;- p2 % "%ﬂyﬁ} -
n n a1 Ny,
For proportions p,, the variance becomes:
1=f :
B (Pppgg) = Y Zyn f; Prln/ing = 1) . (5.4.8)
n ;

For totals (aggregates) we may use, from (5.4.2):
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Vores = Ny or Np and var(Ny ) = Nvar@pe,) - (5.4.4)

Designs for PRES.

The clement variances 8% of SRS selections may be decomposed
mathematically into two components [Kish 1965, 4,64; Cochran 1877, 5.3-
5.61: ’

8% ~ o W,S + TW (¥, - 2. {5.4.5)

The variance Var(F,,,) = (1-f) 8%/m, based on the within stratum
variance 82 = IW,SZ, is less than the total variance, because the between
stratum variance YW, (¥, — ¥)? is eliminated by proportionate stratification in
PRES. In the stratification process we should aim at increasing the between~
stratum variance in order to decrease the within—stratum variance of PRES.
The relative reduction by PRES may be called the design effect of the PRES =
§2/8%, which are measured by

Var(py) (1—Dsi/n

var(fy,  (1- Hs*m

5% -
= (5.4.6)
82

Both values can be computed from the PRES sample, where s2 = T nysén =
T W,s? measures the element variance (within strata) of PRES; and s? is the
simple variance of sample cases. This ratio, D}, = S2/5% is “always” less
than ‘1.0 but seldom less than 0.95 or 0.9 or 0.8; thus the gains in variance of
PRES are seldom greater than 5,10 or 20 percent for the mean ¥,,,, of entire
samples. For proportions these gains tend to be small, close to § percent,
because the element variances S§ = P,Q, are not sensitive to changes in Py
(5.8).

Furthermore, even those modest gains of PRES tend to be further
reduced for subclasses that are crossclasses (cut across strata), reduced in the
proportion M, of the crossclass. So that & gain of 20 percent for an entire
sample (e.g., of all farmers) will be reduced to & gain of & percent for =
crossclass of BI, = 1/10 (e.g., a five year age group of all farmers). For



]
comparisons of two crossclass means (§, ~ ¥} (e.g., difference of means for
two age groups) the gains tend 1o be eliminated almost entirely. Thus for
crosseloss analysis of PRES samples, the simple SRS formulas maoy yield good
approximations, only modest or negligible overestimates of wariances. For
small subclasses these may actually be preferable, when the sample sizes ny,
become two small and unstable for crossclasses (¢) within strata (h) (8.3).

For PRES both the need end opportunities for highly efficient
stratification are often less than either for “optimal” element selection (5.8) or
for 'clustuered samples (7.2). Therefore we may treat the procedures of
stratification more briefly here and present only a few alternatives. 1) The
listing of population elements may come already separated by strata {e.g., by
provinces, districts, ete.) that may be adequate. Then a formal random
selection can be applied with the same [ to select ny, = N, from each of tkle
strata; or a siinpie approximation wi;h the systematic interval F = 1f may be
applied throughout (5.5). When selecting from several lists, the lists
themselves can prcbably constitute strata algo. 2) The N elements may all be
sorted into the H strata and the sampling rute § applied to each. When several
stratifying variables are used and each with several classes, then too many
cells may result and “multiple stratification” may be needed. 3) When sorting
all the N-elements seems too laborsome, a process of “random quotas” may be
useful, if the stratum sizes (N}, or W,) are known: select at random (SRS or an
épproximation) & sample with a preliminary {° rate larger than the reguired f
and then eliminate at random enough of the preliminary n, elements to get the
sample size down to the required size n,, = fN,,. '

5.5 SYSTEMATIC SAMPLING OF ELEMENTS (SYS).

Procedures for SYS are simple and they are widely known, The interval
of selection is computed as k' = N/n, after the desired sample size n and the
population size N are determined. Integers for k are preferable and an integral
k = N/n' can yield a reasonably close n; but techniques for using fractional k
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are also easy [Kish 1965, 4.1B]. Select o random start r from I to k and then
apply the interval k to designate the selection numbers r, r+k, r+2k, ctc. This
will select N/k elements, one elernent from each of f.he' n' intervals of size k
from the N Lstings. The last interval can be smaller than k and yield either 0
or 1 selection; thus the sample size n' can vary by one selection. But much
greater problems of variation often occcur due to blanks and other frame
imperfections (4.2).

Stratification in the ordering of the N listings commonly exists in the
composition of the list. Or it can be introduced by sorting on stratifying
variables to yield designed strats, snd these can be fitted to the selection
interval k. Thus the strata can be of size k or 2k or ik, with i any integer.
However, when we sceept existing sortings within strata, it may stll be
worthwhile to apply the intervals to the strata linked in some meaningful
order. The selection interval is then applied to strata after strata, with some
intervals including fractions of twe strata. This notion is the basis for the
“sérpéntine” order of numbéring area segments for agricultural and other
samples.

1

Systematic ion is commonly used, especially as a simple alternative
io SRS and to PRES. It is simpler to apply and to supervise than independent
random selections, especially in the field work. For example, it is often too
nsky and difficult to trust the field workers to select a prefixed sample size n; of
farms or dwellings from the ith block. But they can be instructed to apply an
interval k, after finding the random start r (from 1 to k) in sealed envelopes

(10.4)

. Unegual probubilities befween strato can be introduced with easy
modifications. To increase the sampling rates in some strata from Ftoi »
one may either &) use & smaller interval k/i, or b) use i distinet random starte
13 Fgpeonsty 804 the interval k with éach. It may even be better to select a
complete sample with the shorter interval k/i (thus with a higher rate) and then
subselect with the interval i in the strata that is to receive only £ Or to
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reverse symbols, when k is an overall interval we can subsample in some
strata with the interval i, in order to lower the sampling rates from ' = 1k to
fh = 14k,

Systematic samples selected with the uniform rate f = 1/k are epsem
and the self—weighting sample mean and simple expansion totals are:

¥ = Dyy/n = y/n and €=y, {5.5.1)

For computing variances we must face a difficulty discussed below:
because the entire sample depends on a single selection (r), computing
variances must be based on one of several alternative models,

1} The population list may be divided into large strats and then the
sample treated as if it were selected with PRES, with variance (5.4.2). This
model pretends that within strata the ny, cases were selected with random
rather than the actual systematic selection used.

2) One extreme of 1) would disregard stratification and use an SRS
variance formula (5.2.6) When the ordering of the population list is a powerful
stratifier this SRS formula overestimates the varianee of the sample, because it
neglects the reduction induced by the stratification. This upward bias would be
less and perhaps negligible in PRES (1). It may be advisable to make some

computations of the design effect by computing the ratios of PRES veriance to
SRS variance. This may also be done with the paired selection formula below
to see if the effects of implicit stratification induced by the SYS selections are
small or even negligible. Note that even moderste varisnce reductions by
PRES tend to vanish toward deft® = 1 for SRS for small subclasses {8.3).

8) Other approaches would recognize the fine stratification achieved with
gystematic sarapling. 1t sassumes a model of n/2 “pseud(;——stmta” and random
paived selections within those strate. However, instesd of only the /2 “even”
pairs of contrasts, like (y;=y,)® + (y4~yg)® + ete, it is preferable (13.2) to
use all the (n—1) pairs available from (y;~yy)? + (yo~yp? + (y3~yo* +
et (pe =y in:
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- 2 (5.6.2)
var (ysvs m )Zj (y) yj+1) .

4) Combining strata has the same expected (average) value as the

above, but it alss avoids the problems of only two selections per “pseudo—

stratum”. Missing observations create blanks (zero) in the computations, these
blanks would dominate in variances for subclass means. These may be treated
with the PRES or SRS formulas of 2 or 1 above. But combined strata offer

alternatives as well as briefer computations in some situations.

3

Suppose, for example, that about n = B00 selections were made with
8YS. These can be divided into 40 replicates for eomputing variances, each ‘
replicate containing about 20 selections:

Rephcate 1 eontains selections 1 + 41 + 81 + ... + 781
2 24 42 + B2+ ...+ 762
“ 40 40 + 80 + 120 + ... + 800

Some of these selections may be missing, or blank, or nonmembers of the

ibelass. The number of elements per replicate may be larger (than 20 here)
for stability. But the number of replicates may also be greater (than 40 here)
for more “degrees of freedom” and stability of the variance estimation. The 40
replicates can be used either for 20 pairs or preferably for 39 suceessive
differences as in 3 above.

Three theoretical problems of sysiematic sampling must be noted here, and
because of them some statisticians prefer to aveid SYS altogether. Others
would avoid 8YS for primary sampling units in multistage selection, but use it
within later stages where they are less risky and more useful (7.3). Those
concerned with these problems may consult Cochiran [1877, Ch. 8] or Kish
{1965, 4.2].

1) First, SYS ‘cme probability samples, when each element receives the
selection probabiiity 1/k with rendom starts r from 1 to k. However, the single
- random selection (r) determines the emtire sample, without independent
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replicates for measuring sampling error. Thus, based on single selections, SYS
are not mensurable somples strictly speaking, and therefore they require models
for measuring sampling errors, as we saw sbove. Because of these concerns,
some statisticlans prefer to take separate random starts for each major stratum,
but this causes a variation of one selected unit in each stratum that is not
exactly of size k; it also complicates the selection procedure.” It is also possible
to use i random starts, each with interval ik = i instead of &k = Vf. This
would be a special case of replicoted selection; but this has complications and
problems also {13.8) |

. ) A strong, consistent linear trend could lead tw biased estimates of the
variance. But this is less likely than an irregular monotonic trend, or some
mild, smooth trends that merely result in weak stratification, which the
variance formulas can reflect adequately.

3) A regular periodic fluctuntion with the period k or 2k or ik or k/i could
be disastrous. But it seems hard w imagine a practicel situation when this

would oceur and the practiving sampler would remain unaware of it.

5.6 OPTIMAL ALLOCATION

Assume the following situation: 1) Population elements are sorted into
strata, 8o that N = I Ny. 2) The chief (or single) aim of the sample is to
produce either the sample mean (¥,) = £ W, ¥, or the total Y=z Np¥p. B
Allocate the sample sizes ny, 8o that with either the variance Var(¥,) or the
cost T cpny, fixed, the other is minimized.

Under these conditions it may be shown [Cochran 1977, 5.5; Kish 1965,
4.6B] that the optimal allocation of the ny, would occur with
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Ty
ny, @ W, S \/ep or £, = —x 8/ /ey or by, « WSy, .

Ny, ‘ {5.6.1)
The first of these in general for amy weights W, that are relative (.e.,
£W),=1), whereas the second uses population sizes N, for weights, so that
W, =Ny/N. In the third the cost factors \/c, are neglected, because in many
situations the element costs ¢, do not differ enough hetween strata to make
variations in ./}, important.

In the right (but rave) situations “optimsl” allocation (OFT) can produce
spectacular reductions of the variance for fixed allowed cost T ey, — or
reductions of the cost for fixed “required* variance, Var(5,). The reductions '
can be estimated with the third term in

Var(opy) LW, T, -T2 £W,(S,~5?
e = |1 = - (5.6.2)

Var(y,,) §2" | 82

The third term measures the reduction of the variance due to OPT allocation
ny, o Wy Sy, and it depends on large variations among the 8y, around the mean
&= £ W,S,. For an allocation ny, o« W;,S,/\/c;, use a cost—weighted mean 5,
=8/ (eyny/T cpny). The second term measures the reduction due to PRES
over SRS selectior;, and it depends on large variations among the ¥, around ¥,

The allocations are only proportionalities, but constamsf are available to
yield' fixed number, [Cochran 1877, 5.5; Kish 1965, 4.6Bl. For ezample for
fixed T ¢,n,, make ny, = KW S;/\/c;,, where K = Leyny/NE W, 8, /ey, There
is a similar constant for minimizing L opny, for fixed “required Var(¥,,), and two
more when the cost factors ¢y, are disregarded and n = I ny is either fized or
rainimized. However, even without these constants proportionality is sufficient
because the ny can be adjusted up or down to the allowed L cyny, or to the
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"required” Var(¥y). Proporiional adjustments can also take care of the
problems due to the lmits ny, = N, or fy £ 1; and larger allocations must be
reduced and the surplus added to the other my,

Means based on only two strata §,, = W,§; + W,¥, present interesting
special cases and the “optimal” allocation (5.6.1) becomes:

n,  W,8,//c, (5.6.3)
WSy

However, we may be also interested in the difference of the two domains means

(¥, = ¥,), when the “optimal” allocation should be

n, Sy ' (5.6.4)

"2 8y

This is a simple instance of conflict between two aims: the weighted sum is
based on the weights W,, whereas for the comparisons the weights are equal.
The two allocations would be similar when W, = W, = 0.5, but if the two
parts differ greatly in size there arises s conflict between allocation for the
comparisons (differences) with {6.6.4) and allocation for the weighted sum with
{5.6.3), which was the stated aim at the start of this section. These conflicts
will be explored under multipurpose designs (9.5).

A fairly common situation for esﬁblishments {farms, stores, firms, etc.)
is to have a highly skewed distribution of very different sizes, with a small
portion of very large units accounting for a much larger portion of total outputs
(production, sales, employment, ete.) and of total variability. In some cases it
may be both possible and desirable to separate the large wnits into a
“certainty” stratum of complete coveragé (f; = 1) and with & selection of f, for
the rest of the smaller units. The basic question of design is tw find the
boundary (approzimately perhaps because of existing groupings) that
minimizes the variance fir a fized totel & = n; + ny; or total cost =
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éinz + cyny. This can be done with trial and error or with available formulas
[Hiridoglou 1881]. The first stratum with f; = 1 and (3~f;}) = 0 has no
sampling error, hence var(y,,) = W%var(}‘z). Sometimes two separate frames -
have been used, with a good (though not “perfect”) list for the large units
{farms, stores, ete.) and area segments for finding the smaller and the missed
units [HHM, 124.11 and 11.8]. Further modifications are feasible; for
example f; < 1 though large; also instead of only one fy, two (or more) strata
with f, and f; may be used for medium and small units.

A different use of two strata ocours in cases of allocation for
nonresponses: inexpensive methods (mail, telephone, registers) that obtain most
of the responses with sampling rate [, (perhaps a census f; = 1), but a much
lower rate f, is used for the stratum of nonresponses, with a more expensive
(e, > ¢;) method (15.4). Another extension of two strata uses fwo—phase
sompling with screening, with a larger f; for the stratum of pesitives than the
f, for the negatives, obtained on a preliminary, inexpensive and imperfect test
for “susceptibles” (12.4).

Several lines of guidance may be stated simply and usefully in

qualitative terms; these can be reasonably guantified with feasible guesses
about the parameters (Sy,¢,, especially) (9.4). ‘

1. “Optimal” ollocation can yield large, even spectacular, gains in some
“pm;per specinl” situations, when the strata can be identified with large
differences in values of 8y, and/or ¢, and when they can be guessed well
_enough. These situations seldom arise for sampling persons or households,
But they do occur for establishments with highly skewed distributions, when
reliable, though imperfect, data are available for efficient stratification that
distinguish well Sh/ﬁ; for the survey variable Yi. Generally, for good
reductions of varia;sces, ratios of several fold are needed in the Shfvfé;; that
is ratios of 4 or 10 or more, which means ratios of 16 or 100 or more in the
Sérey,. ‘
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2. Approzimate values only of S/ /¢y, are usually available and needed.

If exact design parameters were available, we would not need the survey. But
approsimate values of 8,/ \/E; are also adequate. Modest or large mistakes (by
factors less than 2 to 4 in Sy/,/cy, or 4 to 16 in S{/c,) only incur trivial or small
departures (less than 4 fo 10 percent) from-optimal gains. For these reasons I
have often written “optimal” in quotation marks.

3. The multipurpose nature of most surveys presents much more
formidable problems (Ch. 9). a) Abbve we noted a conflict between designs for
domains and comparisons and for overall means. b) Different survey variables
may require conflicting allocations. ¢} Different statistics for the same variable
may also have conflicting “optimals™; e.g., wheress means may require
disproportionate allocations, “optima® for mediens may be close
preportionate (8.1), d) In case of multipurpose conflicts between recognized
aims (also some unrecognized) s simple PRES may be best. However, large
establishments, for example, mky have large values of Sb/\/c‘]; for most
statistics, and some compromise “optimal” may be better.

4. Proportionate sampling is probably preferable for small differences
between S,/./C; e.g., not over 2 (i.e., not over 4 for Si/c,). Therefore, it
seldom pays to depart from PRES for sampling for proportions, because S,; £
m seldom varies by ratios over 2. Also, sampling for persons or faﬁxﬂies
seldom justifies departing from PRES, because large Adepartures from uniform
Sy/\/&y, are seldom available for allocation.

5. Simplicity of analysis also favors PRES. If departures for “optimal”
allocation are needed, a few strata (2 to 5) may be adequate. The sampling
rates may be simple integral multiples, so that §;, = if, or f), = {/i, where fis a

base rate and i sorme simple integers.

6. The concepts and formulas were developed for element sarpling, but
they are also applicable to cluster and multistage sample designs.
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~ CHAPTER 6. CLUSTER AND MULTISTAGE SAMPLING

6.1 REASONS FOR CLUSTER SAMPLING

Chapter 6 and 7 on cluster sampling contain the most important aspects
of this book, because cluster sampling is so frequently used in survey sampling,
especially for agrieultural surveys. Furthermore, clustering also represents the
most basic departures, both theoretical and empirical, from most of the results
of standard siaﬁaﬁcal« analysis. These mathematical results depend heavily on
assumptions of independence (LLD.) between elements, which is contradicted
by the correlations of elements within - clusters in moest surveys, and

particularly in agriculture. That difference of dependence, sssumed in
statistics and lacking in surveys, explains the prineipal justification for the field
of sample surveys.

Instead of elemnent sampling (Ch.5), the sampling vnits contain (often,
typically) severa! or many elements. For example, samples of holdings (farms])
and housebolds can be based on selections of villages or segments. The
population of elements (farms, or farmers, or households) are defined by survey
objectives (1.1, 2.1). However, the sampling units used in the selection and for
the collection of data depend on the situation of the survey and the resources of
the survey organization. The sampling units are usually based on actual, often
spatial, and sometimes social organization of the population; thus correlation of
elements within clusters is usually inevitable, because elements of existing
units tend to be similar — more or less, but almost invariably (6.6).

Typically, in cluster samples, as compared with element sampling we
find that: 1) The cost per;element is lower, due to the lower costs of both listing
and data collection (locating). 2) The element variance is higher (deft®>1),
because of the wusual, though irregular, average positive correlation
(hermogeneity) of elements within clusters (6.8). 3) Swtistical analysis is more
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complex, especislly the inferential statistics, e.g., ste(¥). Cluster sampling is

used widely because the advantage of lower element costs more than

compensates for the increased element variances and the iner mplexity.

The nature of clusters and their use depend both on the cost of histing
and on the costs of locating and collecting data, Firsi, assume that a good,
complete, up-—to—daie listing is not readily available on tapes or sheets. Then
the listing costs depend on the size and the spread of the population, and also
on the size and number of samples to be selected from a listing or frame. _For
example, it may be feasible to list 2 village with 500 farms or & district with
N = 10,000, but too expensive for a province of 100,000 farros. However,
gven this may be feasible for a large sgmple‘,-pf’ n= 10,000, because the ratio
of listing to sample is 10:1. Furthermore the cost of the frgme will seem less
expensive if it can be used for several surveys wit,hou_t( taoa many changes
(11.6). Also 100,000 farms (or households) are more expensive to list ’iff they
are widely spread in a large province vather than concentrated in a fertile
valley (or city).

However, even if a good frame exists (as in the population registers of
Secandinavia), the cosis of locating elements and collecting data may be much
less expensive for clustered samples ~ unless mailed or telephone surveys are
appropriate. Even good lists get quickly dated due to migration, births and
deaths. Also clusters are often more convenient for field interviewers. The
methods of dala collection are important; and the need for callbacks may
reguire a longer stay than a mere hour’s interview. These considerations must
alsc be related to the spread of the population, because a population spread
over a large countr'y or province needs clustered collection, whereas households
of u city may be interviewed individually. Over a large country clustered

samples can be operated and supervised more conveniently.
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6.2 STRATIFIED SAMPLING OF UNEQUAL CLUSTERS

Much of sampling literature deals with random selections of equal sized
clusters, because mathematical derivations and concepts can be more clearly
and readily developed in that framework. Textbooks then proceed tov develop
formulas for selecting at random a sample of a clusters from the population of
A clusters, then subsampling & from B elements from each of the o sample
clusters. Thus from a population of N = AB elements an epsem selection of
n = ab elements can be selected m two stages of unstratified random selection,
with the uniform overall sami:»ling rates of f = (a/A) x (b/B) = ab/AB = n/N.
We may consider that simple design as a special case of the more complex

situations in practical samples of real populations.

However, in our brief treatment of cluster sampling we begin direétly
with unequal clusters, where the population consists of N = TN_ = (N; + N,
+ N, ..+ N,) elements. Selecting a2 sample of o from the population of A
clusters with equal probability £ = a/A for all clusters would yield a sample of
n=%n, =, +n,+ .. +n) elements. Note that: 1) All N populaticn
elements receive the same egual probability of selection = a/A that the
clusters receive because the selection of any clusier results in the selection of
the elements within it; 2) The size of the sample becomes a random variable,
because the cluster sizes n, of the sample vary. Because of that veriation the
sample mean ¥ = y/n = T vy JE n, becomes a ratio of two random variables,
which has some methodological consequences. Methods for controlling extreme
variations in the cluster sizes n_ and in the total sample size n = I n, are

presented later, but without eliminating all variation (7.4).

Furthermore, we also begin directly with stratified selection of clusters,
because stratification is most useful and most commonly used in cluster
sampling, and unstratified random selection is rare in practice; it may be
viewed as a special case when H = 1, In general the sample will be perceived
as composed of n = ¥ yny = £, 8 _ny . sample elements, with ny, = & ny .
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elements from the h-th stratum (b = 1,2,..H). These come from a = © ya,
sample clusters randomly selected from the A, population clusters in the
he~th stratum.

Complete clusters is a name for the technigue described above of including
all n, elements of the o selectsd clusters. This technigue is simple both in
conception and for practical field procedures of coverage (7.1). However, often
the sizes of available and identifisble clusters are both too large and too
variable for efficient sampling; for example, villages in some countries may
vary from 10 to 1000 or even more farms or households, with an average of
perhaps 100. Subsampling of the primary clusters then becomes necessary if a
population listing of smaller units are not available. This leads to fwo— stuge
swnpling of primary selections and of elements from them. More genetally, we
may need multistoge sampling, first of primary selections and last of elements,
but perhaps one or two (or more) sta*gea in between (6.5). Note the emphasis
on the n elements defined by analytical needs, and on the o primary selections
that depend on: the sampling resources and design. The importance of the kind
and number of the ¢ primary ‘ seiections will be found both in practical
considerations of field costs and in the formulas for computing variances.

Techniques based on o primary selection for sample designs and for
varisnce computations mre widely known and used under different names:
simple replication [Kish 1965, Ch 6] and ultimate clusters [HHM 1953, 6.7;
Kalton 1979]. Briefly and directly the ratio means can be written as

¥ oDy IpE Ve
P = =
n

b hnh pH h z uNhu (6.2. 1)

The variance of this ratio means may be computed as

‘ 1~f
var%) = """"'";"" (X hdy% + !'22 hdn% - 2rE hdyhdnh) - 6.2.2)
o) o dla
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dyf = (8, yEa — yi)ftap — 1) and dnf = (2,2 Do = n%)’(% - 1)

also similar Iy dyhdnh‘z (ahE oV haPha ™ yhnh)/ (ah--» iy,

These are general formulas that we shall use throughout for selection designs
for cluster means and their variances. We shall see some simplifications and
modifications for special cases, especially for paired selections. They
are based on  the general formula for vratic means var(ym} =
[var(y) + rivar(n) — Z2reov(y,n)ln®. But note that all computations are based
only on the a = I ,a, pairs of values for the primary computing units yy,, and
Ny, The more complex and lengthy formulas for multistage sampling may be
disrégarded under this formulation of simple replication baséd on primary
selections (uitimate clusters). k

We assume equéd probabilities of selection f for all N elements in the
population, but we ‘shall see that weighted elements ean also be introduced into
the computing units vy, and ny,, (12.5). The factors (1 — ) can he modified 1o
{1 ~ £} inside the summations for strata when different {), are used within
different strata. We shall also note that equal f for elements can be obtained in
multistage sampling with probabilities proportional to measures of size (PPS)
(7.4},

* The presentation is organized avound the ratio means ¥ = y/n. Other

- statistics will be discussed later. But we note now that estimates of the total

(aggregate) Y are more commonly and preferably based on the ratio estimate
N¥ rather than on the simple (unbiased) expression ¥=3 J«yj/g (12.3).

6.3 STRATIFICATION FOR PRIMARY SELECTIONS

A. Veriance reductions from strutification are more feasible, frequent and larger
for clustered and multistage sampling than for PRES selections of elements. A
chief reason is that in the gains T W, (¥n, — ¥)%8,? for stratified clusters,
the denominator Suz for variances between cluster means is much less than §2
in £ Wy (¥, ~ %82 for element sampling; 5,2 may be on the order of S%/b,
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and the relative gains from stratification b times greater for clustering. If
stratification reduces the PSU (primary) varlance by Lk, the variance for o
PSU’s (districts or B.D.'s) stratified equates o ko unstratified PSU’s; % varies
between surveys and variables, but & = 2 is not surprising. Furthermore,
much more data are avcilable for stratifying cluster means than for elements,
and this permits better sorting of clusters, especially PSU’s, into strata with
different mezns ¥,

B. Other motives slsp exist for introducing stratification inte most clustered
samples, stronger reasons than for elaxr;ent sampling (6.1). There ave strong
urges for better spread for safely across the many svailable stratifying
variables, while the number of PSU's must often be limited by high costs.
Linked to those desires for safety, there are also “public relations” aspects for
xﬁaking the sample of PSU’s appear “representative” over the population.

Usually the PSU’s must represent not only the entire population but also
specified major domains, such as provinces. Swratification within these domains
helps, especially because relatively few PSU’s within domains are permitied by
their costs. Disproportionate allocation between domains rmay result from
concerns for domain estimates. Different sampling procedures may be
introduced into different domains and strata. For example, procedures in
urban and metropolitan aress for households, but especially for farms, may
differ greatly from rural procedures; and sampling in rural areas with dense,
irrigated, small farms may differ from sampling large, dry, livestock farms,

C. Numbers of PSU’s, of strate and of stratifving variables become sources of
conflict for reasons implied above. Economic reasons bring severe limits on the
number of PSU's, say between a = 20 and a = 200 usually, seldom higher.
But for surveys using mobile teams, sometimes more numercus (several
hundred) small PSU's have been used. However, if we would use § stratifiers,
each with only 3 clpsses we would need 3% = 720 strata, thus a = 2 x
729 = 1458 PSU’s with only &, = 2 PSU’s per stratum. Or, for fine
stratification with 27 classes for two variables one would also need 27% = 729
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strata. The need for several stratifying variables and the availability of data
for them, tend to lead to only a few, broad classes for each variable, and to
small munber of PSU's per stratum, often ay, = 2. The need for several
stratifiers is enhanced by needs for multipurpese design for most sui'veys
(Ch. 9.3).

Theory can guide us, first by showing that a few classes each on several
stratifiers tend to yield higher pains for most purposes, and especially for
multipurpose designs, than many fine strata for one or two stratifiers [Kish
and Anderson 1978]. Second, this arises chiefly because a few classes (3, 4 or
5) yield most of the gains from any stratifier. Third, it is best to use stratifiers
that are not strongly related to each other, but strongly to the survey

variables.

To compute variances, for measurability (3.5) we must select from each
stratum at least a, = 2 sample PSU’s; thus the number of strata should be
limited to H = a/2, as in paired selections below, where single selections, with

H=ga, are also discussed (6.4). However, some large samples use technigues of

multiple stratification tor controlled selection or deep stratification or latii
designs) that permit the use of much greater numbers of cells than o [Kish
1965, 12.8; Hess, Riedel, Fitzpatrick 1975],

D. Symmetry, regularity, and objectivity are not necessary in the procedures for
fbrming strata. This flexible, judgmental approach to stratification, and
generally to design decisions, stands in contrast to the 6bject.ivity that we
emphasize for the selection process. Flexibility in design helps to cut down on
the number of strata needed. For example, most of the cells of the 729 strata
we mentioned above may be empty (nearly or entirely) and these can be
combined with others, so that we may have H = 100 or 200 strata instead of
729, These empty cells arise because correlations betv;een stratifiers are
unavoidable {(despite our efforts).
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E. “Optimal stratification” of boundaries for strata refers to techniques for
choosing the best boundaries for strata. Quantitative stratifiers often seem to
have skewed frequency distributions, with small portions of sampling units
possessing large portions of the stratifier. For example, much of some
important crop or farm product may come from only a small portion of
districts. If the population were divided into equal sizes, with Wy, constant, the
range of y values (¥, — yp4y) and 5, on the extreme(s) would become oo
wide. But if the ranges of the strata Fp = Yn+y) and S, are controlled then
the stratumn sizes W, vary greatly. Theory shows that the compromise with
W,,5;, constant would yield optimal boundaries [Dalenius 1958]. This has been
developed into a practical procedure of cumulating values of \/f;, where f; is
the frequency at the value y, and dividing that cumulation into equal parts
[Cochran, 1977, 5A7]. The technique needs to be meodified for common
situations when (a) the swratifiers are gqualitative, and (b) the data are only
. available or must be used within arbitrary class divisions.

¥. Egual allucation denotes the selection of constant numbers of sampling units
from strata. This approach can be convenient, and the special case of ay
constant with a,=2 receives much attention here and elsewhere (6.4).
Furthermore, it also has theoretical basiz in () optimal stratification with
Wy, 8, constant, and (b) optimal allocation with sample size ay, « W8, (5.6);
together they point to a, constant.

G. Stratification for later stnges usually receives less attention than for PSU’s,
though it is practiced. For example, & design for farms may use districts or
counties for PSU’s, but sampling farms directly from large PSU's moay be too
costly, hence E.D.’s and segments (or blocks) may be introduced as second and
third stages. We may well introduce stratification into the selection of E.D.’s
and segrnents, perhaps with simple systematic selection applied to ordered
listings. More formal stratified selections in later stages are not likely for
severs] reasons. First, there are too many populations (E.D.s in each districi,
segmenis in each E.D.) to be treated at length. Second, there is probably less
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to be gained from stratification in those later stages. Third, less data are
available for stratifying those smaller and more numerous units. Nevertheless,
a modest effect is probably worthwhile, though there exists little empirical

evidence on these aspects.

6.4 PATRED SELECTIONS

Paired Selections refer here to a special case of stratified cluster
sampling, when 2, =2 in all strata. They serve here as basis for mest
clustered designs, described with several procedures in Chapter 7. Paired
selections are used often both in the literature and in actual designs. They also
appear often as useful models and approzimations for designs, which are not
strictly measurable, as we note below. Two principal reasons account for the

popularity of paired selections in theory and practice.

First, selecting two replicates per stratum permits the maximal number
of strata H=2a/2 for a number o of PSU’s, fixed and limited by costs, but also
subject to the need for at least two random replicates per stratum for
measurability, This also means “equal allocation™ per stratum, which joins
optimal allocation with optimal stratification (6.8). In practical terms this also
means that if a stratum is so large that it warrants a,=4 or 6 PSU’s, we
generally have enough stratifiers that we can use in order to split it into 2 or 3
strata with a, =2 from each.

Second, variance calculations can be somewhat simplified with a,=2,
inswead of a variable a;,>2. The computing units for var(r) in (8.2.2) are
simplified by this identity:

dy? = (anSyl, — ey = 1) = Gpy = yp)? ©6.4.1)
dnf = (ny, ~ nyy)?, aid dyydny = Ghg = Yep)Opa = Dyy) -

With these we have:
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1-f
var %):""‘“2 [Bh e =Yip)® + 17Ty, =0 = 25 By 3~ ¥p )i =) -
n

The vatio (8.2.1) also appears a little simpler with:

r=%= 2,0 y/EhEalhe = T pOha + Yo)/E ploge + nyy) -  (6.4.2)

In 2 gimilar manner, variances for more complex, analytical statistics
are also simplified. This has first been peinted out by Keyfitz [1957], and
paired selections are sometimes referred 1o as the “Keyfitz method” (but
confusingly that name is also used for two other techniques). Though
convenient, pmred selections are not necessary, as some have suggested, for
complex sampling. Alse, for modern computing programs even that
convenicexice becomes less ifnportant, though it still remains useful forkhand
calculators. Similarly paired selections remain useful for “half—sample
replications,” but the BRR method can be modified for ;> 2 (13.5).

"Paired selections per stratum are well suited to robust combined
estimators, of which the ratio mean (6.4.2) is a prime example. This ratio of
means differs greatly from £ ,Wyy,/n, = & W, (v, +yaVng, + ny) called
the separate ratio estimator (12.7). We should also warn that these separate
ratios, il based on only two selections in the denominawrs,' would be very
unstable.

Paired selections also serve as models for variance computations for
selection procedures with only one selection per stratuwm, which are commonly
used for two reasons. First, more control with further stratification may be
designed by dividing each stratum into twe strata. Second, selection
procedures can be simplified especially for PPS selection without replacement
{7.4)., For all designs with single selections, vthe variance computations are
based on pairs of collupsed strata w simulate models of paired selections (13.2).
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6.5 SUBSAMPLING: MULTISTAGE SELECTIONS

The first and major decision concerns giving up the simplicity of element
sarapling for the greater complexities and variances of cluster sampling. The
simplest cluster samples would be based on finding or creating clusters of the
right kind and size, to select a sample of these, and include all elements from
these complete clusters. This can sctually be done ecomomically in some
situations and we gain some'advantages from such one—stage cluster samples.
We could select @ clusters from a population of A clusters as a/2 paired
selections from H = a/2 strata. EPSEM selections with f = a/A would vield o
simple (stratified) random sample of complete clusters (7.1).

Second, we often cannot find nor create economically, clusters of the
right size and kind for direct and complete selection.” For example, when the
sampling units are districts or villages their average sizes B may be o0 large
and their individual sizes B, too variable for complete coverage. The available
clusters must be subjected to subsampling from the primary selection of o
clusters.

Note two sources of cost reductions: only the fraction { 3 = a/A needs to
be lsted; also the travel and locating costs for the subsamples b may be
confined to the populasions B of the secondary sampling unit (88U’s). From
this we may deduce that usually we try to make the selection rate for the first
stagé. fy = a/A, small, in order to reduce the costs for the second stage; thus
f, = 1/100 or 1/1000 are common. On the other hand we prefer small B and
large second stage selection rates f, = b/B, in order to keep low the cost of
listing within clusters. This means that we try to find PSU's that are small

and numerocus; also preferably not too variable in eizes B,

Census enumeration districts (E.D.’s) are fairly small and numerous and
often used for two—stage sampling. But where districts or villages (and other
“natural” and administrative units) are used for PSU’s, not only is the
coverage size B often too large, but the variation in the cluster sizes B; is too
great. We should aveid great variations in the subsample sizes by, but we
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should also aveid unegual sampling rates for elements from different PSU's.
This dilernma is solved by su sling designs with probabilities proportional to
size (PPS) (1.4).

Figure 6.5.1 ~ Decisions leading o Multistage Sampling.

Element sampling
Complete PSUs
Two stage sampling —  Elements within PEUs
Coraplete I 8U's
Three stage sampling ~ Elements in I 8U’s
Complete Il SU's
Four stage sampling

3

We described until now three alternative mothods from which the basic
design must be chosen: element sampling, or complete clusters, or subsampling
with two stages of selection. The subsamples within PSU’s may also be selected
with one of three alternate methods. 1) List all the N, elements in each of the
selected o PSU’s, and select a subsample n; elements from them. - 2) Divide the

PBU’s into By clusters of secondary sampling units (88Us or [ISU’s) and select

a subsample of by complete clusters from them. Element sampling is a special
case when EﬁN-‘ and b;=n;. The n; elements in each of the b; selected
clusters are covered completely. 3) When the sizes n; in the subsampled
clusters iend to be too large subsampling witk three stoges of selection inay be
introduced. Similarly the third stage of selection can also be accomplished in
one of ithree alternative ways: listing and sampling elements directly, or
creating and selecting third stage clusters; or éubsampling those clusters in a
fourth stage. And so0 on,

At each stage of selection we may also choose from several alternative
sampling methods: simple random, stratified random, or systematic, We may
also choose equal probabilities, or different probabilities for different strata or
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units, or FPS selection, We may use different numbers of stages and different
procedures in different strata. It is not feasible to describe all the alternatives,

and we must rely on knowing the basic principles.

The most imporiant choice concerns the purbers and kinds of PBU's.
This importance is clear for the feld collection of data. It is also true for the
primary selections (ultimate clusters) uged in variance computations (13.2). It
is also the basis of simple and adequate cost’factors and formulas (6.7). And
the design effects of clustering and the roh values are also expressed
approximately, simply and a:;equately in terms of ultimate clusters (8.6).

6.6 DESIGN EFFECTS OF CLUSTER SAMPLES. ROH

Clustered. selections generally increase variances and the increases can
be denoted generally by Deft?=actual Variance/SRS Variance. For sample
means this ratio, which shows the effect of clusnering, can be measured by:

var({y) var{¥)

deft?(¥) = (6.6.1)

SRS var(®) sf,in ‘
The numerator var(y) can be computed for a selections with the computing
formulas we give for different designs. The denominator is alsé computed {rom
the sample of n cases, but as if these had been selected with SRS (5.1):
s¢ = (Zy? - y¥n)itn ~ 1). The n used for s2/n is valid for EPSEM, but for
weighted samples it hes to be modified (12.5). This s?,/n does not show effects
of the clustering and therefore it would underestimate the actual variance by
the ratio deft?(¥), as shown in millions of caleulations.

Both the numerator and the denominator are functions of SZ, the
population variance and its unit of measurement. They alse depend inversely

on the sample size n. The denominator sﬁ/n determined by these completely,
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except for sampling variations around its expected value Sg./n. Taking the ratio
removes these two parameters and leaves all the other design factors which

affect only the numerator.,

The numerator  var(§) is subject to sampling variation around its
expected value Var{9), and it can be highly variable, because it is based on only
« selections, which is usually not large. Most importantly, the numerator is
also a function of the kind and size of PSU’s, also of the selection design; this
variation between PSU’s is reduced by the stratification, and that is why
stratifying PSU’s is important. (6.3)

Variance computations based on primary éelections {or ultimate clusters)
reflect the variations among the b, values for the o primary values {(move
precisely among the .4, values of by, within each stratum). Whatever
vomplexity (stratification, control of size, aﬁxiliary wvariable) went into their
selection should be reflected in the computed variances. ;I‘herefore, deft™(¥) is a
_complex measure that surmmarizes many design features, and separating them

would be too complex for most surveys (14.3).

However, it is frequently desirable to separate the effect of the average
cluster size b in order to make the computations useful also for subclasses
{crossclasses) and for other sample sizes. This is done by formulating the
adequaw approximate relationship var(®) = (sgln) 1+ roh(ﬁ-l)}, and
therefore:

#

deft?) = [1 + roh B-1} . - {6.6.2)

From this we compute roh = {(deft?-1)/(B-1), a good approximation if not
taken close to or below b=1. This roh, a “ratio of homogeneity,” is 2 summary
measwre of several design factors, as we said, of which homogeneity within the
subsamples b (really the b_ ) is the most important. It is a substitute for the
farous RHO (or p or 6) in the literature, the cogfficient of intracluss correlation
[Kish 19685, 5.4, 5.8; Cochran 1977, 8.2]. However, RHO is well defined only
for unstratified, random selection of fized size b in one or two stages from equal
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sized clusters. We use roh as an adequate measure for the many multistage
probability sample designs we actually need. Furthermore, using an average
value b, instead of a constant b, is necessary, and this practice has been
justified in many computations for ratio means, with reasonable control over
variations in b, (which is necessary for practical and theoretical reasons)
[HHML, p. 608]. '

The population value Roh is almost always positive and Deft®> 1;
although we do encounter some negative computed values of roh and of deft?
under 1, but usually because of sampling variation due to small numbers a of
PSU’s. We may assume deft?>1 and roh>0 in our practical work, but the .
practical question is guantitative: By how much? There is a great deal of
variation, because some of the effects of homogeneity are great indeed.
Agricultural variables, in particular, can be subject to large factors of

homogeneity due to soil, climate, cultural and other factors.

Deft?® should he computed for many variables in order to measure
increases in variances due to design effects, also deft for increases in standard
errors. 1) They serve as warning devices because values of deft <1 or deft
_>10, though possible, can discover errors in computations. 2} They permit
inferences to other statistics within the same survey. 3) They can be used for
inferences to other and future surveys. 4) They can be used for improving

designs for future surveys (14.2).

“The variance of cluster samples, particularly in sotial research, is
typically greaier than for a comparable sample of elements. This iz not a
logical necessity, but a géneralization based on research with groups of many
kinds. In most groups roh tends to be positive: the individuals within groups
tend to resemble each other. The homogeneity of groups is greater than if
individuals were assigned to them at random. The homogeneity may be due o
selective fsctors in grouping, to joint exposure to similar influences, to the
effects of mutual interaction, or to some combination of these three sources.

Regardless of source, roh measures the homogeneitir in terms of the portion of
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the total element variance that is due to group membership. Sampling units
employed as convenient clusters typically possess some group homogeneity”
{Kish 1965, 5.4].

For reducing deft> = 1 + roh(b ~ 1), the emphasis here has been, as it
is in practice, on controlling b and on reducing roh through subsampling.
Reductions of the subsample size b must balance cost and variance factors
(8.7). For reductions in roh we deﬁend mainly on methods of subsampling for
spreading the sample as widely as possible within the clusters. For example,
when we use districts for PSU’s, instead of wlwﬁné one tomplete segment or a
few, for secondary units, we may select many segments within districts, then
subsample each. Of course, once again one must balance the reduction of
" element variances against increases in element cost. These concepts lead to
multistage sampling: esch stage between PSU’s and elements involves
compromises between reducing variances and the increased costs for lsting
sampling units and for collecting data,

Subsampling is the principal means for sprea&ing samples.  Hs
foundation rests on assumptions that values for roh (clustering effects
homogeneity) for elements are less in large units (like districts) than in small
units (like small, complete segments); empirical evidence backs those
assurnptions. Models based on those assumptions explore this basic notion of

deci’easing roh with increasing area size [Cochran 1977, 9.5; Jessen 18979, 4.8;
Murthy 1967, 8.,3]. These models attempt to present rok in terms of one or
two parameters. But these tend to differ greatly between variables, therefore
they result in conflicts for rultipurpose designs. However, even for single
variables, the simple uniform decrease of homogeneity for distance fails to
stand up to reflection or to evidence [Vates 1981, Ch. 8; Kish 19611
Nevertheless, we may base designs on the general concept of larger values of

roh for elements nearer to each other,
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Sometimes, though not often, we can create ertificinl clusters that have
lower roh values on the average than other clusters of the same size would
have. For ezample: (a) When selecting clusters of numbers from telephone
numbers, or from social insurance numbers, use of last digits can yield
heterogeneous units, whereas the first digits would yield meahingfuﬂy similar
units. (b) From li\stings of dwellings or farms from areas (blocks; E.D.’s, ete.}
systernatic selection defines less homogeneous “clusters” of elements than
would compact segments (10.3), (¢} For selecting segments (from E.D.'s,
villages, ete.) & serpéntine numbering before systematic selection, will tend to
produce a better spread and less homogeneity than a contiguous cluster of
segments would. Each of these exemplify the desirability of spreading the
subsamples within sample units,

6.7 COSTS AND EFFICIENCIES IN CLUSTER SAMPLING

We wish to investigate how the average size b of sample clusters affects
the efficiency of sampling. Most of our models on clustered selections suppose 2
sample of n elements selected from o clusters (PSVs), with an average of n/
a = b elements per cluster. A simple and frequently used linear cost function
states that:

C =cn + C,a = enll + C,/cb]. 8.7.1)

The basic cost en, which is proportional to the sample size in elements, includes
field collection (interviewing), coding, processing, also some ‘sampling costs.
The component C,a denotes costs proportional to the number o of clusters
(PSUN, and it can vary widely. It may be low when it refers merely to
selecting E.D.’s and perhaps finding their boundaries; more if farms and
households must be listed in the o sample clusters, C, can be much higher if it
refers to o districts, in each of which one or more enumerators must be hired,
trained, and retained; or where teams of enumerators in vehicles must be sent
for a week or two. Thus the cost factor C, and the ratio C /¢ can vary widely;
perhaps mostly in the range 1 to 100,
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The ratio Cy/c is more relevant here than the absolute value Cy. The
factors ¢ and n concern scale factors of wages and of the scope of the survey.
By removing them we can concenirate on the factor Ca/cg that denotes the
incrense due to costs of the clusters relative to the unit costs of interviewing. It
is inversely proportional to the average cluster size b: the added cost factor C /e

is relatively easily borne for large sample sizes b.

On the other hand, we must also consider the effects of the average

cluster size b on variances. For the sample mean this can be expressed as:

g2 = (8.7.2)
Var(y) = —E-{l + rohb-1] .
" The “design effect” of clustering over SRS increases ‘variances by the relative
factor roh(b-1), which increases with the cluster size. We can assume roh to be
positive, because it almost always is (6.6); but its value differs greatly between
variables.

. Thus we have a conflict between the two relative umnit values per
element: for larger cluster sizes b, the unit cost decreases but the unit variance
increases. To find an efficient compromise we express the product of the two

unit costs as:
CxVar(¥) = cS2[1 + Ccb] x {1 + roh(b-1)] . (6.7.3)

The sample sizes n cancel, so that this relation does not depend on n,
within the limits that the parameters remain adequate. $? depends greatly on
variables, but not at all on the design or en b. An optimal compromise value
can be found, for either fixed variance or for fixed cost, which is reasonable in
practice. The most efficient value for b is found o be [Cechran 1977, 10.6;
Kish 1965, 8.3b, 8.5}



89

optimal b = /CJc AT — rohj/rok . (6.7.3)

Thus the optimal subsample size b increases with the ratio C,/c and decreases
with roh. But both of the changes are mitigated under the \/ sign, and even
poor guesses about C,/c are not likely to lead to bad allocations.

On the other hand, roh can vary greatly, say from 0.001 to 0.200 or
even higher for different variables, and multipurpose design becomes difficult
indeed.‘ For agricultural variables we may expect high values for some roh
values, hence also high variability among roh values. Multipurpose design
m&st be taken seriously (Ch. 9).

The two models (6.’?.2) and (6.7.1) must be viewaed with some caution,
The linear cost function probably works well only within modest limits, At the
fower end of element sampling, with b= 1 we would have nfc + Cy) and other
procedures are needed to obtain lower C,. At the higher end of large values of
b, one may afford higher values of C, for better procedures.

We must consider three other situations with drastic effects on these
factors. First, when a sample of clusters gets used for several periodic surveys
or as a master frame for several distinct surveys, the C, cnst' factor should be
divided between them. For example, for a listing used 9 times (if it does not
deteriorate), the optimal b increases by /8 = 3. Therefore, most good surveys
come from continuing operations, which can afford high C, to be split among

surveys (Ch 16).

Second, when sampling for rare elements we may well design for large
clusters of b in terms of a total population of householders or farms because
only a portion M, will come into the sample, so that an optimal BM, may be
small even for large values of b, That is, we can use large subsamples of total
households because only a portion K incurs the costs ¢ or is affected by values
of roh (8.2).
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Third, for subclasses (crossclasses), the design effect concerns the
subclass members: [1 + roh (b M, ~ 1)) Therefore for crbssclasses the
optimal cluster size b is increased approximately by /ge:

optimal b = VEe V(1 - ronSigioh Mg - (6.7.4)

For both vare items and crossclases the sample sizes b; become more

variable, and these shomd raise doubts about the use of an average b = m/a.

Some variability of b, must also be tolerated for the entire sample of n = b,

. but these can usually be. contained within reascnable Bmits (Ch 7.4). Owr

models for both costs and design effects intond to include such variations of b,
in the definitions. “
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CHAPTER 7. PROCEDURES FOR CLUSTER SAMPLING

7.1 ONE--8TAGE SELECTION OF COMPLETE CLUSTERS

This iz the simplest form of cluster sampling and the simplést selection
procedure when element sampling is not feasible. It requires partitioning the
population into a large number of uniformly small, well—defined units with
identifiable boundaries,

1. We must either find or create clusters which divide the entire
population of N elements into a large number A of clusters, which are small on
the average N = N/A; also not highly variable: the Ngin N = ZN., should
not vary unduly. Such uniformity seldom ocours “naturally™ villages and
districts typically vary too much in size and often their average also is too large
for selection as complete elugters,

2. The clusters must aleo be clearly and easily identifiable for data
collection; this often implies that they must be simple for feld enumerators.
This requirement often conflicts with the preceding requirement of uniformly
small units. Creating and delineating clear, identifiable boundaries for a large
number of uniformliy small units that partition the entire population is usually
too expensive a task for large populations,

3. Enumeration Districts (ED's), sometimes called Areas (EA’s) are
created in most countries for census purposes. They may be available and
adequate in some countries and some sitnations. They seem to vary from 50 to
300 households in average size, the variation in sizes perhaps mlérahle for a
few postcensal years, and boundaries perhaps available and adequate. If some
of them are too large, perhaps they can be split before Selection (see 7.2).
Decennial censuses pay for the great cost of creating “equal” workload for '
enumerators. But seldom can one find organizations, like the military, which
succeed in dividing their populations inte small, equal branches,
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4. Sometimes the sampler can create small and (appropriately) equal
sized units, which are identifiable; and there also exist some favorable
situstions that the sampler may utilize. Alphabetical listings, when “complete”
and when they can lead to feasible data collection (e.g., mail surveys) can be
used. The number of initial letters (267) are too few and create unegual
clusters; but samplers have created “alphabits” of 3 or 4 starting letters, which
are numérous enough (10,0007, also small and squal enough in size, in order
to serve as identifiable clusters. Also the 365 days of the year have been used
as clusters (e.g., for births, insurance policies, traffic surveys); the number of
clusters can be increased by using either years for longitudinal samples, or
hours for others. Agricultural samples of small populations (e.g., a single
district) can be based on dividing the entire population into ares segments with
clear boundaries, each with a small number (4-107) of farm dwellings. ‘

§. The need f“or many and for ‘small clusters are interrelated and both of
them should be related to the selection rates. This can be seen in the simple
relations SN, = N = AN and A = Fa = a/f. Small average cluster size N
means many clusters A and this population number of clusters must be F = 1/f
times greater than the number a of sample clusters. Also for paired selections
from strata, therd will be H = a/2 = Af/2 strata formed.

6. Complete clusters, if they are clearly identified, can be less difficult

for field enwmerators to cover completely; and they are also easier to control

. and check than subsampling. Thus, they can lead to better coverage of clusters
{Kish, 1965, 8.4B].

For sampling rare elements (such as femaie holders or unusual crops)
complete clusters may be especiﬂly well adapted. The large total size of
clusters (for example of £.10.’s) may only yield a small average number of the
subpopulation of interest. Complete coverage allows for easier instructions,
operations snd contrels than subsampling would, Even some variation in the
size of the clusters is more tolerable when compared to the usual Variations to
be expected in the subpopulation in any case. k
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7. On the other hand, the homogeneity of elements (e.g., holdings,
holders, farmers and households) is likely to be higher than for subsampled
clusters. Subsamples can have lower homogeneity (roh), hence lower variances
in two-~stage (or multistage) samples of the same size n = ab, .than in
complete clusters. But the complete clusters can be cheaper for the sanie’mtal

n. Comparisons for the same cost will differ between variables and situations,

8. The selection equation for paired selections of complete clusters is
simple but instructive:

2 . _1_
pxl=g=f. (7.1.1)

That is, first determine f = n/N, the desired EPSEM sampling rate from the
desired sample sxze n and the estimated population size N. Then with F = b3
for selecting clusters (and elements) form strafn of size 2F clusters for paired
selections. From eoch stratum of 2F clusters select 2 clusters with EPSEM. This
selection gives each cluster the probability of 2/2F == [ and the same for each
element, because the probability of selecting elements is 1 from the complete
selected clusters. The selection equation specifies only EPSEM selections
within strata: These may be true random selections, or one random from each
of two half sirata, systematic selection (6.4). The variance computations

assume two random selections (13.2).

The paired selection design can be modified for other stratified deﬁign of
complete clusters:

w) %x 1 = f for single selections from strata

b) x1=f fork selections from strata

B

€} %‘;x1=f with ay, = fA, for varying' sizes of strata and

selections
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&) :%— z 1 =f, for varying selection rates between strata, but constant
o =2 '

7.2 SIMPLE INTEGRAL SUBSAMPLING

Often the average size N of available clusters, with clearly identifiable
boundaries is too large. If the average N is much greater than the desired
optimal b (8.5) then subsampling of the clusters is indicated. For example, i
the E.D.’s average 200 households and optimal b = § or 10 is indicated, then
we may resort to subsampling. However, the discrepancy between the N and
the opﬁmal b should be by & factor of 4 or more (Fy, > 4) before abandoning the
simplicity of complete clusters; smaller departures from optimal b incur only
moderate or trivial losses; and realistic multipurpose design should also
indicate more Hexibility in choosing b (9.3). However, sometimes subsampling
intervals Fy <4 have also been used; also too large Fy, may increase unduly the
segmenting work., Of the many possible forms of subsampling (8.5), the
simplest iz two—stage sampling, and each stage selected with integrals. For
paired selection this appears as: )

2 L 1 _1_. ,
IFUF,FF,F ’ (7.2.1)

For example, we first find that w/N = f = 1/f = /900 approximately, also
that N = 90 farms per E.D. roughly; and thet the optimal b = 10 roughly.
Then Fy, = 80/10 = 9 and F, = F/Fy, = 900/9 = 100. These numbers can be
adjusted fexibly, to get two convenient numbers so that FoxFy=F. Itis
preferable to have Fy an integer for easier fisld work, but a fractonal Fy can be
applied in the office (5.5). Usually F, should be large in order to reduce the
sample clusters from a large number A to a much smaller number o for easier
field work; but o should be large encugh to reduce variances and to permit
stable computed estimates (14.3). On the other hand, Fy should be small
enough so that not tee much preparatory work on thp B units (e.g. listing farms
or dwellings) is needed to obtain the desired sample of b. These mumbers are
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chosen after the overall sampling rate is determined tentatively as = U
F = n/N; then from n = ab, a desirable pair of a and b are chosen; then from
[ = N/A the pair of rates in F, x Fy are chosen, and these may result in &
readjusted F.

Note several important aspects of (7.2.1), which may also be written in
sampling rates f,f,, which are also selection probabilities:

foxfy=f=UF . : (7.2.2)

1. The f, and f, refer not only to sampling fractions of population units
included in the sample, but also to true probabilities that must be made
sperational: e.g., with tables of random numbers.

2. The equal probebility f for all N population elements results from two
probability operations: second stage selection with £ within selected
clusters, conditional on the cluster’s selection with f, in the first stage.

3. The probability f, = L/F, in the first stage can be applied in a variety of
ways described in 7.1, and with any k = 1, 2, or more in WkF,.

4. Subsampling with f, can be applied in many ways and stages, as
described in 6.5.

5. When the variation of cluster sizes is too large this simple technique
becomes unsatisfactory because the subsample sizes £, x N, vary too
much and are too unstable for both practical and theoretical purpoeses
{13.3). Just what variations in N_ should be judged “too large' to be
wolerated depends on several factors, but the tolerable upper limits for the
largest N, are bound to be somewhere less than 6 times the average N;

" however, with a large number A of clusters and for very rare and hard to
find large values of N, we may tolerate even higher extremes. If
variations in size N, are too large, we must resort to one of several
techniques for controlling subsample sizes with PPS (7.3 — 7.8). As we
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procesd the technigues become more general, so that each earbier method
can be viewed as a specialized case of 7.4. But it is of practical use to get
to know the details of these simpler techniques.

7.3 SYSTEMATIC SELECTION Of INTEGRAL PORTIONS

This is the simplest technique for introducing measures of size, and the
crudest form of PPS sampling. Suppose you find or create a comsecutively
ordered liat of clusters with measures of size. These may be identified cluster
numbers on sheets of paper, with measures of size indicated for each. Or they
may be only areas (blocks or segments) on maps or serial photographs, with
dwellings or farms or parcels identifiable on them. Next a decision about a
basic average size N must be made in light of the procedures to follow. Then
the clusters are numbered with consecutive integers, from 1 to EI,. Each
cluster can be assigned I, = 1,2,..F, integers; thus a block 2 {or 3 or 1)) times
larger than N is assigned 2 (or 3 or 1) integers as measures of size. The
interval of selection F, is applied to the cumulated (consscutive) integers
successively, after a random start from 1 to F,. For example, this serves to
create I, segments in blocks of unequal size, and the numbers of segments will
vary approximately with the block sizes. The sélection prdbabilities in the two
stages are: ‘

e I s

¥, b & b 7.3.1)
In the second stage, the probability VI F, is applied 1o the elements of the a~
th cluster, conditional on this cluster having been selected in the first stage with
probability 1/F,. Thus, the arbitrary integral measure of size I, cancels,
because it assigns direct probabilities in the first stage and indirect probabilities
in the second. Thus, no biss results from ite consistent and contrary uses in
the two stages. To the degree that I_N' comes close to the actual size N, the
variations in subsample sizes will be diminished, and to that degree also the
expected sample size NJ/IF, will be close to the designed subsample size b.
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Furthermore, in the proportion that clusters with I = 1 can be assigned good -
boundaries the design approximates 7.2. And when F, = 1 hence N = b seem
justifiable, the design can resemble the complete clusters of 7.1

The preparat;idn of the frame is complex and it conaists of four tasks: 1)
identifying the cluster boundaries which involves jeining small parts and
splitting large ones (both in pumbers of elements); 2) assigning measures of
. size in consecutive integers; 3) ordering the ch,;.;aﬁers into strata; 4) numbering
the units to establish the listing for selection. These tasks must be done
simultaneously. They can be better described in detail in connection with area
sarapling (10.2).

The measures I, can be assigned arbitrarily and usefully, as will be
noted in 7.4. It may be convenient to make the total T | = aF, s0 £hat ais
also an integer, thus the interval F, will yield exactly a selections. Note that
each implied stratum F, vields one selection, and 2F, yields two selections for
the variance computations. Hence, [, = F, can serve as a maximal size and a
“gelf—representing” PSU, where the rate VF JF, = {is applieci within the

cluster.

7.4 SELECTION WITH FPS: PROBABILITIES PROPORTIONAL TO
MEASURES OF SIZE ‘ '

Some statisticians distinguish -probabilities proportional to size from
probabilities proportional to measures of size, and use PPMS as symbol for the
latter. But this distinetion is not necessary in practice, where exact sizes are
never available, only more or less imperfect measures. Sampling theory should
accept exact sizes as a limiting case without errors when the measures equal
the “true” sizes. Section 7.3 concerned PPS with crude integral measures and
7.5 also concerns PPS, but with explicit strata, whereas here we describe
“implicit strata” of fixed sizes, also called “zones.”

The selection formula can be written as:
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Mes ‘
“xﬁ%.%w%=f , or for paired selectivns:
Fb N (7.4.1
2Mos,, " 1_,
3 rotal Akl
orpe  Mos,  F ‘ (7.4.2)

1. The measures of size Mes,, for the primary clusters may be available
as numbers of farms, households or persons in the clusters in the last census,
Or these numbers may have been adjusted for changes or because snother
population is sought. For exaraple, the only available data may be 1980
Census persons whereas we seek 1988 actual bolders. In 7.8 the Mos, were
simple integers lo, and in 7.2 they were all 1. The numbers Mos_ can be
arbitrary, they are “never” perfect “true” sizes of the population elements, but
we must try to make them roughly proportional to the t.xﬁe size, in order to
reduce st least the extreme variations in the actually obtained subsamples b,
For the desired o of PSU’s we compute Fb* = L Mos Ja.

2. In the second stage the seme Mos, must be used inverset.'y: the
probability b*/Mos,, must be applied to all No elements in the selected a—th
cluster for an expected subsample of size N_b*/Mos, and an actual subsample
b, Many different ways of subsampling with the rates b*/Mos , exist in one,
two or more stages, and we shall describe some later (7.5). Note that we had
to use three symbols for the subsamples: b* for the fixed, designed, intended
subsample; N _b*/Mos, for the expected size directly proportional to the size N

. of the cluster and inversely to the measure Mos; and the actual subsample b,
a random variable around the expected size, resulting from the subsampling

process.

. 3. Through the two selection procedures the constént probability f is
assured to all the N = £ Noa elements in the population, because the same
measure Mos,, is applied directly in the first stage and inversely in the second;
otherwise the equal probabilities would net be maintained (7.7). ’
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4. Selecting a single cluster with Masc from a stratum of size Fb* is not
difficult: select a random number from 1 10 Fb* and apply it to a cumulated list
of the Mos,, where Fb* = I Mos_ for the stratum. Problems arise because of
a conflict : in order to compute variances we veed 2 (or more) selections per
stratum. However, two selections per stratum, with varying Mos_ and without
replacement is difficult. But one of the following six may be used, preferably
a,b,e, or d. )

a) Systematic selection with random start 1 to Fb® is easiest; but it faces
technical objections (5.5). :

b} Systematic selection with new random starts 1 to Fb* for every odd.
(1,3,5...) interval, in order to avoid the theoretical problems of a single
random start: other similar schemes can be used.

¢) Divide each stratum of 2Fb* into two half—strata of size Fb* and take
a random start 1 to Fb* for each, a total of o selections for the ¢ half—
strata, '

" d) Select two random nwmbers from 1 to 2Fb*. If the same cluster is
selected twice, take two samples from it, but without duplication of
elements. " For this method, clusters of Mos, 22b* must exist or be
created, so that two subsamples can be selected with b*/Bos,, This
has been called “simple replicated subsampling”™ [Kish 1965, 8.6A], and
“graduate variable probabilities” [Sanchez-Crespo 1977].

¢) Select two random numbers from 1 to 2Fb*; if the same cluster is
selected the second time, select again until a different cluster shows up.
Accept the selection bias against larger clusters as “negligible™(?).

f) There are many metheds in a large literature for ‘selecting two {(or
more?) units (from 1 to 2Fb*) without replacement with varying
probabilities. They are all difficuls, [Cochran 1977, 9A.1-94.12;
Murthy 1967, 6.10~6.11; Brewer and Hauif 1983; Kish 1968, 7.4]

8. The next section, 7.5, deals with explicit strata of different sizes
M, = § Mosy, created by cumulating complete PSU’s. In this section we
accepted a fixed zonstant Fb* to be the size of the half strata for methods a, b,
¢, and 2Fb* in d, e, f. If we simply cumulate the values of Mos_ this leads o &
conflict because most of the stratum boundaries will cut across PSU values.
This problem of implicit strata, or “zones” [Deming 1960] may not be of great
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practical importance, and ecan be deslt with one of several siternative
procedures. 8) With systematic selection (a8 in 4a above) two selections do not
occur, unless Mos,>Fb®. b) With some labor one or a few values of Mos,,
may be arbitraﬁly adjusted in esch stratuwm to create explicit sirata of coraplete
- measures T Mosy, = Fb* (or 2Fb*). No bias result if the same adjusted
Mos,, is used in both stages. ¢) Accept the impﬁcit strata (zones) and if & value
Mos,, is selected from two strata, then separate subsamples are selected with
b*/Mos, for both strata, Here again we need Mos, = 2b* to permit two
separate selections [Kish 1965, 7.5 for procedural details].

6. Adjustments of Mos_, if they caneel in the two stages, do not destroy
the desired EPSEM I, To several uses of flexibility, already noted, we should
add deliberately low assigned values of Mos, in order to decrease the selection
probability Mos,, of some units and increase the size of the subsamples of those
units when they are selected. For example, clusters that are distant, or
expensive to reach, or costly to list, may all receive low values of Mos,, with
the expectation of larger subsamples Mos, when selected. On the contrary we
may deliberately incresse Mos, for units we prefer to include even if with
correspondingly smaller subsamples b

7. The above flexibility may also be had by altering the designed
subsample size b®, but thet may be better done in separate strata,” with
different b* in diffprent strata. This in turn leads to possibly using different fj,
in different strats, with inverse weighting in the analysis.

7.5 PPS IN EXPLICIT STRATA: SUBSAMPLING

In some situations more formal selections of the PSU's seems preferable
and these from clearly defined strata in the first stage. Thus, denote the
_selection probability of a PSU by Py, = Mos /M, with My, = £ _ Mosy,, the
swm of the measures of ihe PSU’s in the first stage. In that case we have for
the two stages '
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Mos, M
X =f.

M, Mos, {1.5.1)

&

f
Pth:=

The second stage probabilities must be inversely proportional to the ﬁrst
stage probabilities, and the factors in the second stage are worth perusing for
their content. Note that Myf represents the designed size of the subsample
from the hth stratum. This technique can be utilized when the inconveniences
of irnplicit strata seem troublesoms. It is used comménly when a selection of
PSU’s (counties, districts) is used over longer periods {e.g., between decennial
censuses) for selecting many samples from a master sarmple. These have been
deseribed several times [USCB 1963, 1980; Kish 1985, Ch. 10; Hess 1985].

We may note several modifications of the basic (7.5.1). To compute
variances it is necessary to collapse similar strata, perhaps in pairs {13.2). Or
it may instead be preferable to double the stratum sizes and then seleet one
PSU from each half of stratum:

2Mes,  M,f

z ={.
Mos;,, 2ZMos, (7.8.2)

Selections within PSU’s can take many forms (7.8), and frequently the
same PSU's can be used for many samples with differsnt selection methods,
sometimes in two or more stages. For example, one may select a small fixed
number (e.g. 2) in the second stege and then use the last stage of selection to
balance the equation (e.g. applied systematically to last stage listings of
. segments or elements):

Mﬁsa 2 MhBhaf
E S 4 = N
M; By, 2Mos, (7.5.8)

Vet another stage may be introduced; for example, b secondary units can be
selected in the second stage, and from each of these ¢ third stage units, and the
entire operation balanced in the fourth stage with variable sizes:
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Mos a b 4 MhBhaChaﬁf

b P ®

Mh Bha Chaﬁ bcMOSa (7.5,4)

Here we assume that the numbers of sampling units in the second and
third stages are variable By and Gy o They typigally are varisble in both
numbers and in sizes (messured in numbers of elements. They may possess
accepted (administraﬁve) definitions and boundaries that the sampler merely
recogr}izes and accepts. However, the sampler can and should use fexibility to
“gplit and combine” them in ordér to form units that will be more equal in size
. (nuinbers of elements). The closer the sampling units ave in size the less size
variation is introduced by the ratios b/B,, and c/CM However, even more
control of size can be introduced with FPPS if measures of size caw be oblained;
- then {7.5.3) may be reformulated:

Mos, bhos,, BB F
x % f.

Mk th bmﬁ .ﬂmu (7“.5-5}

" Here My, = £ gios g the sum of measures Mos g4 for secondary (8} umplﬁxg
units within the selected primary o sampling unit from the stratum (hj; b
sampling units are selected. In (7.5.3) b = 2, each selected with equal 1/B, .

However (7.5.5) may serve more often to control variations in size, because
assigning the measures Mos g may be feasible more often than creating
secondary units with equal sizes. In both cases the last selection rate applied
to numerous small units {elements or segments) is used to maintain the overall
sampling rate and probability £ but this rust permit variations in the number
of selected last stage units. See also subsampling in 6.5, and in chapter 10 on
area sampling, and the three earlier references.
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7.6 SIMPLE TECHNIQUES FOR CONTROLLING SIZE

' Control of b,, the size of subsamples is valuable and useful in most

surveys, Selections with PPS are powerful and flexible technigues for that
purpose, but in the next two sections we describe some other techniques also
useful sometimes. -

“Split and combine” is a technigue for forming artificial “pseude” clusters
that are less unequal then the natural clusters from which they are formed.
This may be adequate when a large majority of natural clusters can be
accepted unchanged, or can be combined inte congenient (contiguous,
neighboring) units of acceptable sizes; small cluawfs can be combined into one
or they ean be attached to acceptable clusters. ‘A small proportion of large
units, perhaps in separate strats, can be split into smaller units, For example,
a Bat of “pseudo—B.IN's" may be crested from an obsolete census Het.

Stratification. by size can be s convenient method for reducing variation in
gize. With 3, 4 or § strate for size, the variation in size can be greatly reduced
within those strata. On the other hand, we may need strata for other
wariables, when the numbers of strata we can use is narrowly limited; in those
situations we should use PPS for control of cluster sizes, and thus leave
stratification for other variables. However, sometimes sizes of units can also

serve as domains of interest in the analysis, hence also as strata.

Size— stratified subsampling appears as a reasonable design: (1) clusters
are stratified by size; (2) the sizes of the strata are made roughly equal in the
population and in the sample; (3) the subsampling of clusters is designed for an
EPSEM of elements. Then we can select 2 clusters (or other ay) from each
stratum; some strata can have few, large clusters while others hsve many,
small clusters; yet from roughly equal sized clusters we can obtain roughly
equal—sized subsamples from all strata. The selection rates ean be written as:

11 1 ; = oF
mxr}:‘: A f, = fha x fhb» with Fha F;}: " (7.6.1)’
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Usually £ = n/N would be computed first as an everall sampling rate.
Then probably the different Fy;, can be computed to yleld royghly the desired
subsample sizes b, from different cluster sizes By, since B /Fyp = by
Suppose that the cluster sizes run from B, = 1000 down to B, = 10 and even
below, and b, = 10 seems about right. Then from Fyy, = 60 to Fyy, = 1 can
. give us most of the control we need, and in only 4 size strata:

lxl 1:1 113-V 3':lcl lx-}-'-

¥a  Frp 80 BL ol ! 5712 80

Range of B, §to 20 15t 70 60 to 300 250 plus

range of b, 5 to 20 4 to 18 5025 4 plus
Note that:

{1}

(2)

(3}

(4)

(8)

()

N

We cut a 200 fold variation in B, from 5 to 1000 down t0 a 4 or § fold
variation within 4 strata. The standard deviation in size may be much
fess. : : :

This even allows for overlaps in stratum boundaries for cases when

_ guessing exact values for B, is too difficult or expensive.

Any units with B, <5 may be combined into “pseudo” clusters.

The selection may be made with one cluster selected from the stratum of
size Fy,; the size boundaries of strata may be shifted since we allowed
for flexibility already. Otherwise we must tolerate variations in numbers
selected.

All the above was written with single selections ﬁer stratum. But double
selections from strata of size 2F,, would be advisable to prepare for
variance computations.

If some of the strata have 2F,, plus clusters split the strata into two or
more.

The number 60 used above had convenient factors. In most cases
F = 1/f can be adjusted somewhat in order to yield convenient factors,
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7.7 EXACT SUBSAMPLE SIZES

Throughout this chapter we faced the comumon problem that measures of
size for clusters Mos, differ from the actual sizes N found for subsampling
elements; differences can be due to changes (obsoleacence), imperfect measures,
and especially different populations (e.g., Mos_, of persons and N, of heldings).
The preceding sections describe techniques for comr&ling and reducing extreme
variations, but allowing some variations in the achieved subsample sizes b, in
_order to maintain controlled probabilities [, usually EPSEM, for all population
elements N. This practice is preferved and common in survey sampling. In
contrast, in this section we describe procedures for exact subsample sizes by
but allowing selection probabilities f, to vary between clusters.

The simplest situvation would be for equal selection probabilities in the
first stage (because measures of size for clusters were lacking, mistrusted, or
ignored), followed by fixed subsample sizes by from the selected clusters:

a b ab (7..10)
Kxﬂﬁ-sz-zfavariable .

w &

This procedure is not uncommon, and some naively believe that because
each stage was EPSEM, so is the combined two-stage procedure. However,
selection probabilities are inversely proportional to the cluster sizes N,
Elements (holdings) from large clusters are underrepresented compared to
glements from small clusters, Exact subsample sizes by have several
disadvantages. ‘

a) If the unequsal probabilities are ignored in selfweighting estimates, the
selection bias can produce biased results to the degree that it is correlated with
survey results,

b) To eliminate that bias needs weighting proportional to N_, but such
weighting can often increase variances, sometimes considerably (12.5).
Furthermore, obtaining good measures of N_ may be coatly,
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¢) Belecting fized numbers by of elements may be expensive, compared to
selecting with fixed rates or intervals (7.1-7.6). The N_ elements must be
obtained and usuvally listed. SRS selections are usually difficult, whereas
systematic sampling with intervals N_/ff; (or integers based on them) are
easier. Usually the listing requires separate trips to the clusters, whereas fixed
intervals may be applied on the first visit.

d) The symmeivies of equal, fixed clusters of by are often destroyed in
any case, by nonresponses unless substitutions are adopted. For subelasses the
inequalities are even greater and practically irremediable.

Fixed sample sizes are sssumed in standard statistical literature, and the
prejudice ssems difficult to overcome. But in the practice of survey sampling
usuany variable sample sizes and fixed probabilities are preferred, and fixed
sample sizes are usually mistaken. . [Kish, 1977). The ;Sroblen:s noted below
are similar in principle, though perhaps different in quantity and in the types
of biases incurred, in several other situations.

Suppose that a multigtage situation is treated as a “hie;'archicai”
situation would be treated in ezperimental design; equal sample sizes are
selected at sach stage and the probabilities of selection become

a _ b, © f—if abf% :
X x X S .
A B: U:ﬁ afy o ady
The overall probabilities would be difficult to ascertain. If ignored, probability
sampling is abandoned for “model sampling” (3.2). ‘

{(1.7.3)

Supposs measures of size Mos, are used in the first stage of selection,
but in the second stage fixed sized subsamples by are selected:

{1.1.3)
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Perhaps by/M;, can be fixed and the chief variable becomes the ratio of
Mos /N, To the degree that measures are proportional {or equal} to actual
sizes, the ratios Mos /N, are constant (or 1); otherwise selection biases can
result similar to those of (7.7.1). If measures are “good,” the disadvantages a
and b become less important, but procedural problems for fized by in ¢ and 4
may remain, and the advantages of fixed by remain doubtful.
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CHAPTER 8. DOMAINS AND SUBCLASSES

8.1, TYPES AND CLASSES

Domains can denote divisions, usually partitions, of the population, and
subelusses the corresponding divisions of the sample. The sampling literature
has been careless and confused in terminology, and it is useful to become
clearer in the fﬁmre.‘ “Bubpopulations” and “subnational domains” have also
been used for population divigions and “subsamples” for subclasses. Strats and
clusters also denote partitions of the sample, but they are used for improved
sample design and are oftén numerous. ‘The purpose of domaing and
subclasses is to serve the substantive analyses of data.

The practical treatment of sample designs and analysis is alse confused
by common presentations for subclasses of different kinds, which ¢an have very
diverse practical effects. We develop three types of domains and subclasses and

four size classes. Realistically the arbitrary boundaries of these types and
classes are not sharp and categorical, but gradual and alse conditional on
situations. But paming these 3x4=12 kinds should serve to emphasize that

not all subelass broblems are similar.

This topic deserves the emphasis that this entire and early chapter
presents, because most survey analysis concerns not only the overall estimates,
like ¥, but also similar subclasses ¥, and ¥, and their differences F, ~ 7). It
is difficult to interrupt technical presentations at every point, which are mostly
given in terms of ¥, but the subclass statistica should be always in our minds.
They will be noted in multipurpose designs (9.8). First, let us distinguish three
types of crossclasses and domains.

a) Designed subclusses are those for which separate samples have been
planned, designed, and selected, usually in separate strata. They are combined
to form the entive sample, usually as ‘(weighted) sums of independent
samples. For example: major regions or provinces, or urban and rural portions, '
where each of these is composed of entive strata of PSU’s. ‘



109

b} Crosselasses are at the other extreme, because they cut across sample
designs, strata, and sampﬁng units. These are the most commonly used in»
subclass analysis; e.g., age, sex, education and income classes; kinds or sizes of
agricultural holdings; behavioral and attitudinal subclasses, ete. Usually they
cannot be separated by design before selection, because individual information
is not available for their separation before the survey. Their spread in the
pepulation is never entirely even or random, such as for social and econbmic

factors, but they can be relatively so.

Types of Sizes of Classes

Classes Major Minor Mini

Eresign classes | Major regions, - 50 states of 3000 counties of
provinees United States United States

Mixed classes | Partial sogregation: natural resources, cultural, ethric, or mixed
types: gcgions X age

Crossclasses | Five-year age groups | Single years of age | Years of age x

Major occupations Cecupation education
education Age * education
% income
Figure 8.1.1 Classification of Domains and Subel (with E leg)

¢} Mixed closses are between the two exireme tvpes and less commonly
used; they have pot been separated by design before selection like design
domains, but not evenly spread like crossclasses, and they tend to concentrate
unevenly and irregularly in swrata and in sampling units. They are common in
agriculture where soil and climate can create relative concentrations like riee in
some regions, wheat in others, and grazing cattle in still others. Farming

specialties and fisheries, as well as lumber and mining, are of this type.
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For separating sizes of subclosses into four classes we must mention
boundaries that are arbitrary and subject to changes. However, it would be
more misleading to lump together all different sizes of subclasses, when there
are such wide discrepancies between them, both as regards methods for
sampling thers and in survey results, »

1. Major subclosses comprise between 1/4 and 1/20 of the sample and
we shall name 1/10 for a usual boundary For ezample, 4 to 6 major regions
or provinces for major design classss, also 5 to 10 year age groups for major
erossclasses. Most samples are large enough to yield reasonably good
estimates for mejor subclasses also, though with standard errors increased by-
factors of 2 or 3. For crossclasses the number of elements is the key factor,
but for design classes numbers of PSU's can also matter (14.3).

2. Minor closses coutain perhaps from /10 to /100 of the sample.
These may refer to 10--50 provinces of different sizes for design classes, and
 single years of age for crossclasses, or five—year age groups with four
education classes in a two-fold classification. Separate statistics for minor
classes are often sought for minor classes, and sometimes satisfied by large
samples or by cumulations (8.6). They generally are not adequately
represented by the sample design, especially by numbers of PSﬁ’s for

crossclasses,

3. Mini domains may contain from 17100 to 171000 or less of the
population and may not even be separately and individually covered by the
sample though they are represented by it. Requests for separate statistics
(e.g., for the 3000 counties of the USA) arrive these years from administrative
BOUrCes, who need statistics more current than the last census. Samples are
too small to provide these alone and other methods are needed (8.5).

4. Rare types that ocour in less than 171000 of the population and of the
sample present problems for which the entire sample is useless, Separate
techoiques and lists are needed because survey sampling dees not provide
proper tools (8.6),
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Demains and strata have different meanings and uses, but they are often
confused, and both represent partitions of the population. Domains are used in
the analysis, whereas strata serve the sample design. It is helpful to use
strata to create design domains when one can, but strata can be made wuch
more numerous than design domains, and should be so made so as to provide
stable bases for them. Furthermore, most subclasses are crossclasses that
represent crossdomains which cut acres strata and across sampling units

because we cannot control them in the selection.

8.2 COMMON EFFECTS ON SUBCLASS STATISTICS

_Subclass means ¥, = yJ/n, are the statistics most frequently used and
also most developed, but much of the discussion is also relevant for other
statistics based on subclasses.

Differences (comparisons) of pairs of subclass means, such a8 ¥, — ¥4 =
V/n, = ¥g/ng, vecur frequently also in the analyses of sample surveys. The
denominators n, and ny of subclasses in practice tend to have several common
characteristics.

a) They generally represent count variables of the sample sizes of
‘subclasses: 0,1 variables denoting (non)membership in a specified subclass (and
domain). They may be unweighted counts, but if weighted the same weights
should enter the numerators as the bases. But sometimes the bases may also
be other {continuous) variables z_ and x4 {e.g., hectares of a crop, when yJ/x, iz
vield per hectare); and most statistics for ratio means (means, variances) are
adequate for them also (13.1).

b} Shbclass differences usually compare partitions (non—overlapping) of
the sample {and of the iwopulatian), based on categories of «the same variable.
This feature is assumed for simplifying some of the variance formulas and
computations; for other comparisong (for overlaps, inclusions, different bases
for subclaases) special care and notation are needed for variance computations.

For example, farmers under and over 40 years old are non-—overlapping
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partitions; but rice farmers and wheat farmers can overlap, because some
farmers may raise both. They may be exhaustive partitions (e.g., under
versus over 40 years old) -or only two of k partitions (e.g., under 25, 25-30,
30-35, ete.).

¢) The denominators are usually random variables, because ‘the total
sample size was also, but especially because subclass sizes (n, and ny) can
seldom be comtrolled. This feature has consequences that are handled in ’
variance computations. ) ' ’ i

d) The numerators y, and y, represent the same variable from different
bases for the compared pair. This cbvious feature simplifies some computing
aspscts.

&) The above describe what are commenly understood by subclass mesns
and differences. They should not be confused with other statistics: propoxﬁona
such as y./y and y4/y are better called “shares” of the entire sample, and the
difference (y/y — y4/y) is & comparison of shares.

We describe now some general effects on subclass statistics, which arise
when statistics are based on the values y, and n, of subclass members, and
nonmembers are assigned zero values (blanks).

A, Seiectian probabilities py and weights wy « Ip; for individual sample
elements are preserved for (inherited by) subclass members; they are not
affected by the zers values assigned to nonmembers. Sample means, totals and
other descriptive stutistics refain their forms for subclasses. The unbiasedness of
the simple expansion total ?c = E yy/p; is retained. Ratio means §, = y/n,
retain their sturdy consistency until the variability of n, becomes too high for
small subelasses, n, (13.3).

B. Somple sizes become smaller; also highly variable for crossclosses. We
shall later (8.3-8.4) compare subclashk means with specifically designed entire
sample mesans of similar sizes. Here we emphasize the drastic reductions of
sample sizes and consequent increases of variances even for major subclasses,
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For SRS the variances for subclasses of relative size M, = M/N increase by
that factor: var (§,) = var(?c)fﬁc. For complex designs the effects are modified
around those basic, major increases. We must consider those increases in
multipurpose design (9.3).

C. Design eﬁ'eéts of stratification and of clustering behave in opposite
ways to each other: in PRES the Deft?< 1; but in clustering Deft®> 1, often
considerably. However, both of those effects tend to be reduced considerably,
proporﬁonamly as crossclass sizes ﬁ‘: decrease. We may generalize specific
findings (8.3, 8.4): both stratified and clustered designs represent controis (over
the joint selection probabilities) and in crossclasses those controls are reduced,‘
and tend to be lost (Fig. 8.2.1).

D. Designs for domains induce conflicts with each other and with the entire
sample. Conflicts can arise in allocating sample sizes and rates to provide
‘adequabe sample sizes for subclass statistics. Optimal allocations to strata
cnntéin sources for further conflicts, greatly magnified if screening procedures
are also needed (9.3). '

E. Variance estimators becor table as sample sizes decrease. This
becomes particularly troublesome for design subclasses in cluster sampling,
when small numbers a, of PSU"s can seriously challenge the utility of variance
computations (8.4)., ' ’

8.3 EFFECTS OF STRATIFICATION (PRES) ON SUBCLASSES

The principal effect of dealing with subclasses is to reduce sample sizes
from n to nczﬁcn, with corresponding increases in the basic SRS variénces by
the factor ﬁc=Mc/N, the proportion of domain ¢ in the population, Here we
investigate further effects, sc that we may compare sdbclésm of size n, with
specifically designed samples of similar sizes. These comparisons are useful for
designing samples, and also for Interpreting sampling error functions,
especially deft? computed for the entire sample.
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For design subcluosses the variance estimators have on the averuge the
same deft® as the entire sample. This conjecture can be used: a) to save
separate computations; also b) because separate computations may be too
unstable, because the number of PSU's &, are too few for adequate separate
bases (14.3), However, we must be cautious with that average, because design
subclasses may differ greatly. For example, the deft? between provinces may
differ greatly concerning rice or wheat vields or production; on the other hand
deft? may be similar for poultry and pig production, and permit averaging and
“pooling” or “borrowing” deft? (14.3). Furthermore, if the sampling fractions
are varied between design domains, then they must be separately considered.

For crossclasses the situation is guite different, because detign effects
deft® are reduced in proportion to' decreases in M, = MJN. “Exact”
mathematical statements need more definitions and development than the
" subject warrants here (it involves factors like (ny—1¥ny); and they may be
found elsewhere [Kish and Frankel, 1974; Kish, 1965, 4.5; Kish 1980;
Cochran, 1977, 5A.14]. The principal results are interesting and useful. The

mean for a erossclass can be computed simply as

Fe = yo/ne = TnYne/ Tulines
the simple self-weighting mean for EPSEM selections, assuming that PRES
was used. However, if sampling rates differ between strats, then weighted
statistics should be used. The variance of ¥, may be viewed approximately as:

Var(y,) = {331 + (1—5&)8?} In, = [Sz - Mc 2} Ing, (8.3.1)

where 5% = 82 + S The total element variance is composed of S2, the
within stratum variance, and S = T W,(¥, — V)2, the between stratum
variance. For entire samples M =1, the second term in (8.3.1) vanishes and
the variance is S2/n.. For small crossclasses, M, is small, the second term of
(8.3.2) tends to vanish, and the variance approaches S%/n, Thus the gains of
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PRES tend to vanish for small crossclasses in proportion to 37,,. For example, a
“large” gain of 20 pervent becomes merely 2 percent for a crossclass of 10
percent, because 1-M, . 20=0.98. o

These approsimations serve adequately for understanding and for
designs, More precise formulations (as found in the above references) require
lengthy descriptions. They are needed for extensions to stratified samples
beyond PRES: also for computing variances, The tendency toward SRS is even
stronger for differences of means of crossclasses, where a good approximations
. Var(, — Jo = S¥n, + 5%/, . (8.3.2)

That is, variances for differences of crosscloss means for PRES tend to those for
SRS, losing all the gains of stratification. Furthem;ore, this also happens to
ordinary kxm Cﬁii-—square tests, which can also be viewed as combinations of
pairwise differences. We may conjecture similar tendencies for other analytical
statistics from PRES [Kish and Frankel, 1974].

The most drastic eﬁécé is on variances of simple expdnsion lotals of
crossclasses, '
Y‘<: = Thy, ch/fh = EhNhy ch/nh:
Var(¥) = L,NIM,[Sh, + (M) T2 /oy . (8.3.3)
Because of the loss of control over the sample size n, of the crossclass (¢)
the element variance becomes inflated by the second term, which adds the
squared mean to the within stratum variance. On the other hand if the domain

sizes M, are available for a ratio mean Iy Mp¥en / Bop, then this term can be
avoided (12.3).
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8.4 EFFECTS OF CLUSTERING ON SUBCLASSES

Here we describe the effects of clustering on subelasses of sizes n, in
comparison with complete samples of similar sizes. These effects look beyond
the pﬁncipai effect of variance increases due to decreases of sample sizes from
~nton, =aM, = nM/N, where M, denotes proportion of the population in
~ subclassc. ‘

k In order to be generally meaningtul, yet bnef and sirnple, we present this
prob%ein antively within a framework of ultimate clusters: samples of n = Ib,
elements in a clusters with the average of b = wa elements per cluster. The
b, vary some but not too much, so that the b may be useful in judging design
effects. The sample of o clusters denote primary selections of PSUs, usually
strotified. The subsamples b, denote elements in ultimate clusters selected
 with any EPSEM design, Unequal, selections with weighted estimates are
discussed later, :

Clusberingk generally increases the wvariances of cluster means, as
measured by values of deft®> 1, The increases vary a great deal, and these
variations are also reﬂectaedby subclass means, but in modified forms. We
should first distinguish the effects deft?=[1 + roh (b-1) | on design subclasses

from those on crossclasses.,

Design subclosses (and domains) are based on separate and independent
strata (by definition). That forms the basis for imputing to them variances and
deft? from values computed for the overall sample mean 7. Conjectures from
deftd(®) to deftz(fy'*c) for design subclasses {¢) seem feagonable when similar
designs prevail over all domaing; that is, when the design and deft® in the 8, =
M,a subclass clusters are similar to those in the entire sample of a clusters.
For example, 2 sample of holdings may have similar subsample sizes b and
designs for the separate provinces {(domains). Then assuming similar values of
deft? for subclasses, and for the entire sample we may impute that
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, var(y) = var(y/ M., (8.4.1)
because deft’§) = defty); and M, = n/n may be assumed. Such
imputations are more difficult and complex when the designs differ for
subclasses; for example, designs for metropolitan areas, urban areas, and rural
areas may all differ basically in the nature and degree of clustering (sizes of B).
Even then we may remember that the overall var(§) and deft™(F) are the
weighted averages of sxxmlar functions for the separate design subclasses
(14.3).

For crossclusses the situation is quite different, imputation a bit more
complex but also more stable, and backed by a great deal of empirical evidence,
Crossclasses (by definition) tend to cut across all strata and all clusters, hence
to reduce design effects in drastic and fairly predictable manner. The reduction
of the sample size from n to n, = M_n, and retention of all (or mopst) of the a
clusters, also means that the average subsample size gets reduced from b to b,
= § b; this reduction is assumed to¢ happen in all the o sample clusters on the
average. But we alse expect some variation in the actual subsample sizes b,
even for demographic variables like age, children, births; and even more
variability for socio--economic classes like income and occ}xpatiori, because of
their partially clustered distributions. Some variables, like type of farming,
that depend on soil and climate, can be even more clustered andhmay be

considered neither crossclasses nor design classes, but mixed types.

The design effects on the entire sample have been denoted as
deft? = [1+ roh(b ~ 1)]: ratios of increases in element variances, where the
rok summarizes the effect of clustering (with stratification) and averages them
over the diverse parts of the sample. These synthetic roh values vary greatly
between variables and designs, and are specific for them. The design effects

for crossclasses can be similarly denoted as deft? = { 1 + roh (B, — 1)], but it
* would be laborious to compute these for all kinds of crossclasses. Fortunately,
it seems generally true that for crosaclasses, approximately rob, = roh for ;he

entire sample. Therefore, we may use as an approximation:
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deft? = 1 + roh (b, = 1) = 1 + roh(n/a ~ 1). (8.4.2)

Def? tends to be reduced toward 1 as the crossclass proportions M,
decreases, because roh, for crossclasses tends to be similar to roh for the entire
sample, for specific variables and designs. This relationship has been shown in
many computations [Verma et al, 1980; Kish et .al., 1978], but with some
modifications.  First, only nJa = b >1 should be considered, because the
relationship tends to break down near E.c = 1, where deftf approaches 1 in any
case. Second, roh,>roh slightly even for “frue” crossclasses, and somewhat
more for socio--economic classes. But these slight increases (perhaps roh, =

1.2 roh as a rough tendency) pale to insignificance compared to differences of
roh between survey variables (which may be ten— or hundred fold); also to
differences between subclass sizes Sc, especially when compared to b. The
relationships seem to stand up best, f‘orumabely, where they are most needed:
for larger values of deft?, due to larger values of roh, and b,. They should not
be used for values of deft? and of b, near 1, where they are less needed. In a
’ word. roh, is much more “portable” for different crossclasses of specific
variables than is deft?, because it excludes the common, wide variations in b,.

Differences between crossclass means show further reductions of clustering
effects: covariance terms, 2 cov(¥,, ¥, tend to reduce the clustering effects, so
that var(§, — ¥4) comes closer to SRS variances but still remains higher:

8% n, + 8¥ ny < Var(y, ~ 59 < Var§,) + VarFy . (8.4.3)

These relationships have been found in many computations over the yeuars
(Kish, 1968, 14.1; Kish et al., 1976; Verwna et al., 1980]. Though subject to
sampling fluctuations, results tend to fall nearer the lower (SRS) limit than the
higher limit (without covariances). Because of those sampling fluctuations in
computed results, we prefer to use here the expected population values,
symbolized with capitals. We may symbolize usefully and jointly the
relationships of (8.4.2) and (8.4.3) with:

1'< Defi¥(§, — ¥, <Ave[Deft’( §,) + Deft’(y,)] < Deft(y) . (8.4.4)
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If Deft®(¥) is not much greater than 1, then some reasonable conjectures about
Deft %(§, ~ ¥4) may be made between those limits. The third term denotes an

average of its two components.

For simplicity, we had to assume for this section EFSEM selections with
self—weighted results, also rather uniform design over the entire sample. For
different designs, with differing probabilities or different designs over portions,
the above may still be useful, but more complex analysis is needed. These
would need developing at greater length than would be feasible here. We note
here alse that increases in variances due to “random” weighting persist also in
subclasses (12.8).

8.5 SMALL DOMAIN STATISTICS: TECHNIQUES AND CUMULATIONS

Complete censuses and administrative records yield datwa for small
domains, whether crossdomains or design domains like small Xocai
administrative areas. But data from decennial censuses are not timely and
‘these from registers are not “rich” in depth and spread (17.1). Sample surveys
alone cannot provide sample bases in the detail needed for small domains,

- because of small sizes in numbers of elements, and especially in numbers (a) of

primary selections.

Demand for statistics for small domains, especially local administrative
and geographical areas, has been growing in all fields. It is especially needed
for agricultural statistics where croﬁs, yields, practices and economics depend
so much on local conditions. Statistics are needed not only for understanding
and planning, but alse for administrative action that should be specific to small
domg:ina;

‘Growth in supplies of statistical capabilities raay have been even move
erucial than the demands in the recent growth of techniques for statistics of
small domains and local areas. Recent growth of capabilities has come in three
bagic flelds. First, there are more and better data from three sources: from
censuses, from administrative records, and from sample surveys. Second, we
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witness an explosion in the capabilities of statistical computing machines and
programs. Third, statistical estmxanng technigues have been designed to take
advantage of the above two advances. : i

"It would be difficult to describe briefly the diverse methods developed for
population counts and for vital and health statistics. Two recent reviews with
many references are by Platek ot sl. [1985] and Purcell and Kish {1980}. The
techniques depend on different combinations of the three sources of data:
censuses, registers, and samples. And each of eight major techniques now
available also uses different statistical methods for oombmmg those sources of
data. The central concept consists of combining the strength of each source to
overcome the weaknesses of the other(s). ‘

“Cumulating coses and combining statistics from different samples is
becoming more feasible with the growth of repeated and periodic surveys.
Cumulating cases can refer to aggregating, summing, amassing individual
elements from repeated surveys. Combining statistics from published results
can be done for surveys and for experiments carried ouwt in diverse places and
at different times.” [Kigh, 1987, 6.6] Larger samples for domains, especially
for minor domains, are needed for most surveys: sample sizes are Hmited,
whereas interest in details is unlimited. Cumulating cases over time from
periodic samples seems particularly attractive. For example, a national sample
of farms, taken yearly or quarterly, may also yield reliable data for major
domains but not for minor domains. However, cumulations over, say, five
periods, may yield adequate data for minor domains, though less frequently.

For minidoraains some combined small area technique may be feasible.

8.6 SAMPLING FOR RARE ITEMS

Suppose that only a small proportion ﬁc = NJ/N of the total population
possesses a variable (trait, item) denoted by ¥;30, and for the vast majority
{N = N, the variable Y;= 0. For example, only a small proportion ﬁc of ali N
holders may grow Y; kgs of walnuts, or raise ¥, turkeys, however the other
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N~ N faxfmers have none, ¥;=0. The rare item to be estimated may be the
number N, or the proportion N =N/N of the rare subclass; or it may be the
" mean ¥,=Y/N, of the variable within the subclass, or the mean Y/N=Y N,
over the entire population. Any or all of these may hold substantive interest,
and they present related problems of finding a semple n, to estimate M, for
whom Y, 0.

Several alternative methods are presented below for dealing with these
problems. The choice between them depends on the rarity ﬁc of the variable
and on the costs of measuring Y;; also on the available resources, special lists
and the costs and bisses of such special lists and resources. It may not be tos
difficult vo Bnd crops that are grown by § percent of holders, or only in a fesw

" districts of one provinge. But if only 1/1000 of the holders grow it and they are
scattered over most of the country, the problem becomes difficult, unless a good
list is availsble. For very rare, scattered and unidentifiable items, survey
sampling may not be feasible at all. Detailed treat.ment.sy or alternatives and
further references may be found elsewhere [Kalton and Anderson 1986; Kish
1965, 11.4]. These methods are presented not only for the ‘}ery ‘;rare items,”

but alse for minidomains and even minor domains, as defined in (8.1).

a) Cumulation of rare populations may be the best strategy for
continuing or periodic surveys with changing samples (16.3). For example,
from quarterly surveys of agriculture, four qaé.rters over a year, or twelve over
three years, may yield adequate sa;hples. The cumulated statistics must be
regarded as averages over the periods covered by the surveys, and such
averaging has definife advantages, especially in agriculture, which is.subject to

‘seasonal and even yearly fluctuations.

b} Multipurpose somples cover several or many rarve variables on the
same survey(s) and divide the costs among them. They can also enrich
analysis with statistics on relationships between these variables. Surveys for

. market research commonly cover several products, esch relatively rare. In a

sense every survey of agriculture is a multipurpese survey of distinct erops and’
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animals, most of them more or less rare. Similarly health surveys cover
distinet diseases, most of them rare, and a health survey can cumulate cases
from §2 weekly semples [NCHS 19581, Thus cwnulations go well with
multipurpose surveys.

¢} Large clusters can decrease drastically the costs of locating and
screening for rare populations. For example, a sample of complete E.D.’s, or of
villages, can be searched and screened for holdings or households with the
needed trait(s). Even large clusters will vield only small clusters of the rave
population: from B, elements in the cluster we expect N B, members. The
actual numbers will vary arcund this, hence one can also tolerate greater
variation in the B_ (size of E.D. or village).

d) Disproportionate sampling with “optimal” allocation may be used if
the rare population tends to be concentrated in some clusters, and especially
some domains, which can be identified before selection. Ag an extreme example,
suppose a crop is known to grow only in one province or valley, where a high
sampling ratio f'l may be used; the rest of the country may “safely” receive
fy = 0 with this “cut—off” method that would omit no more than negligible
amounts [HHM, 1953, 11.6]. But concentration is not so extreme for most
variables, and “optimal” allocation with two of a few strata must be used,
when the areas and levels of concentration can be identified in advance.

e) Two-—phese sampling (double sampling) may be used when the
clusters and strata with concentrations of the needed rare population cannot be
readily identified in advence of the selection. The first phase consists of &
screening operation for identifying mernbers of the rare population. If that
would be too expensive, screening may sometimes be used to identify clusters
with high concentration. For example, districts or villages with many of the
needed farmers zhay be identified from lists of inguiries on a sampling basis in
~ the first phase and then “optimal” allocation applied in the second.
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The screening operation must be cheap and therefore usually has errovs
of inclusion and exclusion. Screening is useful when it is cheap per element,
yet has very few “false negatives” (erroneous exclusions), and not too many
“false positives” (erroneous inclusions). The costs and ratios of both kinds of
errors are important, but false exclusions are much worse. The allocation of
effort between the first and the second phase should be determined by the
efficiency of the sereening and the ratie of costs in the two phases [Kish 1965,
12.1; Cochran 1977, 12.1-12.5].

) Special lists may provide the moest efficient (or only feasible) technigue
for populations that are: very rare, widespread and difficult to identify in the
field: but available (mostly) on a good list or lists. For example, it is possible
that (almest) all holders who raise & rare animal belong to an association {for
legal or economig reasons). Most lists are far from perfect, and if a large
proportion (or not small) of the rare population (I-Nc) are unlisted, and if the
unlisted differ in kind, samples from the list would give biased results. When
finding and identifying a probability sample of a rare population just is not
feasiblé, lists of such elements have been used. Means from such lists may or
may not be badly biased. Analytical statistics of relations must alse be viewed
with eaution (3.2). And esﬁmaws of aggregates must depend on outside data,
m;)dels, and conjectures.

g Dual or multiple frames can be useful in agriculture. A basic example
uses a special list of a population, as above, but adds an ares supplement for
elements missing from the list. For example, a rare po;;ulasion may be
identified on the list of the last census {or some other list), and an area
sﬁpplement can be added to find new and missing elements. The sampling
fraction for- the list could be much larger than for the supplement (£,/f,>1)
because the cost per element is much less for the listed holders (¢ /e,<1). The
area sample could exclude those on the list, or include them because that may
be cheaper (11.2).



‘ 124

b} Other methods are available for' finding rare elements but we may
leave those to the referenices above; because they are not generally useful in
agricultural surveys. Bateh testing can be used to find rare elements, if part of
the roaterial, when tested in batches (as in blood tests) can revea! the presence
of even ose rare element, which may then be identified with further testing.
Snowball sampling is a colorful name borrowed for various techaiques of
building up lists for special populations hy using an initial set of the members
as informants. Multiplicity sampling refers to using several informants to find,

identify (and perhaps collect data about) sach element of & rare population.
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CHAPTER 9. MULTIPURPOSE SAMPLE DESIGN

9.1 UNIPURPOSE DESIGN

Most surveys involve several purposes during the planning 'stagea,k
Typically many more purposes emerge later during the analyses of the data
and during their interpretation and utilization. Why then is the true
multipurpose nature of surveys neglected in sampling methods? These usually
present a unipurpose orientation for economical sample designs. The reason for
that oversimplification is that sampling theory is rather complex already, and
multipurpose design would make it even more complex and difficult, For the
same resson we also must begin with simple unipurpese designs, before we
leave that simple base for multipurpose designs in later sections. We had
already presented (5.2) the commeonly known

Var(F,y = (1 ~ H 8%n ©{9.1.1)

for the designed variance of means (¥) with SRS of n eleménw. This result
should be viewed as the Var () obtained for a fixed total cost of C = eng with ¢
as the estimated cdst per element, C buys n = Cle. The designed Var(®
depends on the guessed element variance §2%. both are estimated and that is
why they carry the notation (~). From the data themselves valid estimates
var (Sr'j = (1 ~ Ds®/n can be computed; and too low guesses for 52 will result in
actual var(§) which then would be larger than the designed Vér(y); but the
wrong guesses for parameters would not bias the sample statistics, For this
formulation we needed: the sample design (SRS); the sample size n, from
n = Cle, hence C and ¢; estimate or guess for §%: also £ = whN for (1 ~ ), but
this is seldom importent, If ¢ is underestimated C = en will be higher than
planned, because adjusting n is seldom practical, The most important and
difficult task is the decision to choose () as the “only” or the wmest important
“gratistics,” for which Var(¥) is designed and 42 guessed. This unigue choice is
avoided in later sections for multipurpose designs.
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If the Var(¥) seems higher than “required,” the sample size n and cost
C = cn may be scaled up in order to reduce it. Less often Var(¥) may be lower
than “required” and then costs may be reduced.

If the “required” precision Var (%) is relatively fixed and the allowed
sample size and cost C = en can be suited to that need, then the above
procedure may be reversed t proceed from Var (%) to the n needed to attain it

n' = 8%Var(y) and n = n'(1 + n'/N) . (9.1.2)

The size n' neglects the factor (1 — ), but dividing by (1 + n'/N) yields the
fimal n corrected for this factor ~ which is usually negligible, and may even be

insppropriate.

If the initial guess about 82 was an underestimate and the sample
results show 8%>82, then var(?}>{73r(i). But the required Var(y) may be
obtained with a supplemental simple n® so that (@ + n"/m = 8% For
practical reasons of data collection it may be better to design initially for a

‘ sufficiently large sample n(max), then select first a small sample n (min); on
the basis of the simple estimates s%, enlarge the sample to attain var(¥) close to
the “required” Var(§). This two—phase procedure assumes flexibility in the
timing and the cost cn of data collection: that fexibility may not be feasible.

Two other sources of uncertainty, hence two other needs for size
adjustments, contern nonresponse and design effects. Nonresponse and
noncoverage must be anticipdted in planning any design. These can vary a
great deal and any planned vulue is subject to errors, but a simple piocedure
may suffice here. Express the coverage rate with the proportion p, and the
response rate with p, and then use these to inflate the planned sample size:
ny = o/(p,p). Thus if one wants n = 1000 and expects p, = 0.96 for
coverage and p, = 0.98 for response, n, = 1000/0.93 - 0.96 = 1120 should
ba the initial target. One may also view these factors as factors that decrease
the effective population size from which the sampling fraction f = o/N i
selected,
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The effects of departures of the sample design from SRS can most simply
dealt with estimates of design effects, but of course always with errors in these
advance estimates based on extraneous sources (14.1). Remember that
typically for stratified PRES samples Deft? = S, #8%<1 (slightly) (5.4).
Deft? = [1 + roh(d ~ 1I>1 for clustered samples and these can vary from
mild to severs effects and deserve detailed investigations (6.6). In either case
one may view the effects as D?S%n = S¥/(/D?): either directly on the effective
element variance D®S%, or inversely on the effective sample size w/D?,

Estimating the element variance §% is not difficult for proportions, when
P can be estimated well enough to guess §% = PQ, which is not highly sensitive
o moderate ervors in P. When one can guess both ¥ and the coefficient of
variation C = S/¥ well enough, then 82 = C2¥2 may also serve us. Although
never easy or brecise, reasonable guesses about 8% are often feasible, and using
models can be helpful [Kish 1965, Fig. 8.2.11.
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9.2 PURPOSES

The term ‘“multipurpose” has been used with several meanings and
especially for levels 3 and 4 below; and four other levels need recognition as
well. Thus the twenty or so distinet meanings for the concept of
“raultipurpese” are presented in a hierarchy of six levels, rising from the least
to the most complex type of survey operaﬁons,» All those meanings need
attention, because any of them can lead to the kind of conflicts listed later that
we should become aware of during thé design of surveys. We shall list texi
arsas of conflicts and most of these can cccur in connection with most of the
kinds of purposes distinguished here.

1. Diverse statistics from the same variables should be noted and treated
se;;arawly. For example, hectares of wheat holdings can be presented not only
with the mean of holdings, but also with the median (which can'be much less)
and other gquantiles: and also as the percentage with Iess than some fixed
number of hectares. Optimal allocation for the mean will point to selecting
more large farms, whereas the median, the quantiles, and the percentages will
all tend to point to PRES as nearly optimal (5.6).

Complex analytical statistics, such as regressions, categorical data
analysis, and other methods for the analyses of relationships would, if pursued,
also tend to Jead to different allocations.

The time aspecis of periodic studies often represent a variety of
purposes, and these can lead to conflicts’ when designs for individual (micro—)
changes and of aggrégate {macro—) changes ave compared to designs for
cumulated data and for current (static) levels (9.3, 16.3). For example,
peripdic agncultural surveys should have maximal overlaps (panels?) of
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holdings to measure changes in plantings (of wheat, rice, vegetables, in
response to changes in prices or policies); but to cumulate for enlarged samples
it is best to design for minimal (zero) overlaps (16.3).

2. Statistics for domaing present most often the greatest problems and
sources of conflict. Differences between sizes of domains and of the entire
sample can be very large. Strong needs gmd reasonable requests for better
provincial data are comunonly expressed. The nature of different domains is
described elsewhere (8.1), also the areas of conflict and of useful compromises
(9.5)., We merely repeat that the primary effects of domains that cover the
proportion ﬂc = MJ/N of the population are to reduce sample sizes and
increase variances by Efc. Thus, even for major domains that cover 0.10 of the
population and sample, variances increase by factors of 10, Furthermore, for
subclass analysis based on comparisons of pairs the vé.riances will tend to be

20 times greater than the overall sample variance.

3. Multiple variables on single subjects are very common and' they ocour
in several forms. PFirst, alternative measures may be taken on single variables,
For example, the time, labor, and fertilizers spent on the far;n can each be
measured in alternative ways., Crop yields can be measured in wet or dry
weights, and in other ways. The crops growing on specified fields may need
several measures if' they are interplanted, 6:‘ if Athey are rotated between
seasons. Second, different peridds of coverage — per day, per week, per
meonth, during the entire year - will each yield different measures of the same
basic variable.

Third, surveys often cover diverse aspects with different variables of the
same subjects. For example, production of a single crop involves the areas of
planted plots, fertilizers, labor for planting and for harvesting, then the
transport and economics of selling of the crop. These, like all the alternatives
noted under the first three points above, are examples of multipurpose needs

common in most surveys even for single subjects.
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4. Multisubject surveys are, however, conducted very frequently. For
example, agricultural surveys may fruitfully combine in the same schedule and
interview some items sbout the production of some crop (like rice), together
with its own food consumption and with related financial items. Furthermore,
agricultural surveys often deal with several, often many, crops; and production
of every crop and domestic animaol is o distinet subject that reguires sepavate
attention, planning, hence design. Multicrop agricultural surveys are
multisubject surveys.

In other fields also, multisubject surveys are common. Surveys of store
inventories for market research combine several clients on single surveys.
Health surveys often combine many disesses because each of them would be a
rare item that would be both expensive and unstable (8.5). Socio—economic
surveys also uncover more and richer relationships by combining several
subjects in a single schedule, interview and field operation.

5. Continuing and integrated survey operations raise survey copplexities
to an even higher level. Furthermore, their influence is broader than has been
commonly appreciated: perhaps most good surveys in many countries depend
on the operations of some continuing, integrated organization (office, institute,
ste.), often in the nstional statistical office. Setting up a high quality,
widespread survey operaiion may just be too difficult and expensive for single

surveys.

Survey operations of the U.S. Census Bureau (USCB) and its Current
Population S}Arveys are well known examples. “The advantages and savings
are substantial; they may be properly allocated with cost accounting, similarly
to investments in large machine tools for mass production” [Kish 1985, 12.6,
Ch. 10; USCB 1978). The National Sample Survey of India is an early and
outstanding example [Murthy 1967, Ch. 151 The United Nations’ National
Household Survey Capability Program is successfully promoting integrated
survey programs [UN 1980]. The survey operations of Statistics Sweden and
Statistics Canada also cover different fields and methods, different technicians
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and different Seld staffs, all from single coordinated offices for sample surveys.
This also occurs outside of the central statistical offices, as in the Institute for
- Social Research of The University of Michigan [Hess 1988],

6. Master frames and master samples must involve at least some loose
level of coordination needed for the combined utilization of common design
aspects. Joint use implies some design constraints as well as benefits from
commeon utilization. The two terms in the title have been used without clear
definitions or distinctions, and perhaps some examples will suffice here.

An extveme of a master sample comes the Current Population Surveys of
the TJSCB where sample areas are divided into 8 segments to be selected for 8
identical periodic surveys [USCB 1978). Master listings of sample blocks,
areas, E.D.’s are also used for selecting unspecified, diverse samples for data
collection by a sinéle organization. However, a sample of listings can be used
also by several organizations; in The Federal Republic of Germany one firm
sells addresses for most samples. A single selection of PSU's, staffed with
skilled interviewers. may be used by several government burez;us for distinet
sample surveys; agriculture, employment, health, education, ete.

9.3 TEN AREAS OF CONFLICTS BETWEEN PURFOSES

These areas of conflicts do not have one—to—one relationships with the
twenty or so purposes listed under siz levels (2.2). Any of the ten areas may
occur with most of the purposes, and we may think of 60 or 200 kinds of
conflicts, though some should be morg common and important than others,

References indicate where these conflicts are discussed in more detail,

a) The overall size of the sample size in numbers of elements n (holdings,
households, interviews) should be a source of concern and confliet. For
multistage samples the numbers of other units, especially of PSU’s, must also
concern the designer of samples.. But it would be too complex to discuss all
selection stages here, and we may here use Dg, the design effects, as surrogate
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measures for the omitted complexities. For brevity, D§ alzo includes the fpe =
{1 = fg). The index g denotes a specific statistic, which has complex sources,
because it depends on the variables, on the subclass base, and on sther factors.

A sample of size n yields for a mean 3’# the Var(¥,) = ngngf‘/n, and the
sample size needed for a required Var(¥,) is n, = S,2D */Var(y,). These can
-differ considerably between statistics g, because of variations in all its factors.
Especially when dealing with subclasses the variations between sizes can be
great. We may express the subclass size as my = nng, yielded by the
subelass proportion from an overall sample size n.. Then the sampling fraction
fp = /N = m /PN needed to yield subclass size my, = S;2D ?/Var(5,) is

f, = §,D Var(F P, N. (9.3.1)

Thus, the overall samapling fraction f; may have to be increased greatly
to satisfy the Var(ye) specified for a small subclass Pg. '

If it were not for cost constraints, it would be possible to satisfy all the
required fg by taking the largest f; as a result of such generous design the fg
g and m, for other statistics would be larger, hence Var ljr'e) smaller, than
needed. But restraints on total costs seldom permit such generosity (9.4).

b) Allocation of the ny among domains presents other problers, though
related to those of (a). For example, the overall sample sizes of (a) concern us
most when designing for crossclass sizes, such as age groups. But, suppose
that we want to: (1) satisfy requests for specified values of Var(S‘R) for
provinces g; or (2) distribute a fixed total sample size n, = Ing, so as to have
the same Varfyg) for all provinces. OF course, the provinces “always” differ
greatly in size; thus to satisfy these provincial requests would result in widely
different sampling fractions f; for the various domains. These differences
result in conflicts of allocation between provincial and other design domains,
and also for the needs of overall national and crossclass data. Joint solutions
and adequate compromises are presenied latar (9.4-8.5).



133

¢) Allocation among strata should not be“confused with allocation for
domains, although they may be related. For example, production of a crop (say
rice} may differ widely between provinces; thus for estimating total, national
rice production some widely disproportionate sampling rates f, .may be
“optimal,” with greater f;, o provinces with greater and more variable
production rates. In general, this concerns the allocation of a fixed total Sample
size n = In, among the strata (b); or total fixed cost Teymy, if the costs vary;
or domain sizes m_ = Imy, for domain totals (9.4-9.5). Clearly the best
allocations will differ between crops (rice, wheat, cattle, ete.). For overall
agricultural surveys it may be best to have perhaps a smaller fi, for urban and
metropolitan areas. ) ‘

d) Choice of stratifving varichles poses problems, especially for
multisubject surveys and for fmegrabed survey operations. If, for example, the
same survey or operation covers both agricultural product.ioh and employment
statistics, the best stratifiers will differ for the two, However, for such
problems of optimal efficiency, adequate solutions may be found with partial
use of both (or all) sets of stratifiers and with compromises (6.3).

e) Optimal cluster sizes differ between variables and especially between
crossclasses and the entire samples. For simplicity, we use again the overall
design effects I)ﬂ2 = [1 + rohy(b, — 1)] to measure the effects of clustering
(6.6). This neglects the separate effects for stages of selection and
stratification, It also uses an overall average b = ng/a, the members of
elements per PSU over the sample; but it may be desivable te design smaller Eg
for blocks in metropolitan areas than for large outlying areas (6.7).

The variation in the DK2 may not be as great as for some of the conflicts
in a,b, and ¢; thus compromises may be less difficult; the range of usual
variation in most cases may be 1<D82< 10 perhaps. The relative range in roh
may be great, say 0.001<rch<0.200; yet it can have only mild effects on the
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optimal b = /{C/c}(I~roh)/roh] (6.6-6.7). The design must also consider
divergent values of my = Pgngla, and for small crossclass proportions I“g the
optimal values of the total cluster size by, may be large (8.4, 8.6).

f) Measures for cluster sizes may also differ. For example, whereas we
may neglect the differences betwesn total persons and total dwellings and
oecupied dwellings for measures of cluster sizes, numbers of boldings and of
dwallings generally differ widely. This raises problems for integrated surveys
that try to satisfy both holdingss and all housebolds.

g Retoining sompling units (PSU’s) provides techniques for adequate
compromises between divergent measures of size for different subjects and
objectives. The techniques also serve (and were designed for) measures that
change over time, e.g., between decennial censuses. They can also provide
compromises for differences in strata between conflicting designs, as in d above
(1.7

h) Designs over time for periodic surveys must involve several decisions.
a) How much overlap to include: total for measuring changes, or none for
cumulating, or partial (0<P< 1, but how large) for static measures? b) What
units in the overlaps: elements, or PSU’s only, or some intermediate units? ¢)
What periods to overlap: monthly, or yearly, or quarterly? (16.3).

i) Relations of biases to varible errors in RSME = m provide
interesting contrasts between variables, and particularly between statistics for
small domains and for overall statistics (15.2).- In summary: bisses and
potential biases may dominate for some overall statistics (means and totals),
though not necessarily for all. However, for amall domains, and especially for
comparisons, the variable errors, especially sampling ervors, incresse faster
relatively, and they tend to become larger than biases.
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i) Computing and presenting sampling errors aleo require decisions and
choices, because usually it is not feasible to compute, and even less to present,
sampling errors for all of the many statisties that survey reports commonly
offer in large numbers. This is especially true of sampling errors for all domain
statistics. Thus generalized tables are often devised and presented (14.3).

As for measuring and presenting not only sampling errvers, but also all
sources of biases, that is but an idle dream stimulated by articles about “total
survey errors.”

9.4 COMBINED OPTIMA

Two distinct technical methods exist for the joint solution of conflicts in
allocation, and particularly for the first three conflicts noted above: a) overall
sample size, b) allocations among domains, and ¢) allocations to strata. One
method designs weighted compromises among variances for fized total cost
{9.8). Ancther approach, merely outlined here, uses iterative, nonlinear
programming in order to satisfy for minimal cost the specified veriances (or
" required precisions) jointly for all stated purposes. These elegant solutions
utilize the capacities of modern computers and have appeared in many articles
since 1963 [Cochran 1977, 5.3-5.4, Bean and Burmeister 1978, Rodriquez—
Vera 1982, Kokan 1963). They deal chiefly with allocations among domains,
and with allocations to BUALH.

The costs needed to satisfy the required precisions often turn out to be
much too high for the sponsors, because the “required precisions” were
unrealistic, It would be possible to scale the emtire sample down to an
allowable cost level; but such resealing would give all the required precisions
the same lack of importance, and this would not be as realistic as the fixed cost
approach of 9.5. Such rescaling would expose the lack of realism of this
elegant approach.



136
This situation perhaps points o a fundamental fault in an approach that
is based on fixed specified variances. This implies assigning arbitrarily fixed
constant values to any variance below the “required” Var(§) and zero values to
variances above it. Instead of such dichotomous step funchons, it is more
realistic to postulate smoother functions of increauihg worth for decreasing
variances. The compromises of the next secﬁon atterpt to provide designs for

them.

9.5 COMPROMISE ALLOCATIONS

A potentially useful approach calls for a compromise by overnging oll the
“optimal” allocations for various purposes, by minimizing the combined weighted
variances for fized cost, or fixed sample size. Let us first note the four steps
involved in this method and then critically evaluate them. “Potemiaﬂy" above
will be justified by examples of the method’s applicability. But it also signifies
that no formal application of these methods has been found in practice. -
Therefore, the reader may be justified in passing over these necessarily
techx"xica} pages. k '

1. Denote with Eng?Ini the variance attainable for a statistic g, with
the allocations of sample sizes n, for the i—th component of variation. The
index g may refer to variables, domains, formulation (e.g. ¥). The index i may
refer to domains, strata, stages; for all of these components and statistics,
linear summations of gquadratic terms is assumed, as in sarpling theory .
generally. : '

2. Denote with V,*(min) the minimal variance obtainable for the
statistic g for a fixed cost C = Den,. This would be for the “optimal” allocation
of the sample gwes n; to domains, strata, stages; such optimal allocations are

mentioned in these separate sections.

3. Now let
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1+ Lyny = (5V )V (min) = 5CH/my (9.5.1)

denote the ratio of increase in the variance, due to any allocation n; for the
statistic g, over its own minimal variance. Thus Ly(n) measures the relative
loss for the statisiic g over its own minimal {optimal) value of 1. Accepting these
relative variances c,?/u, and relative losses L,(n;) to be minimized represent a
critical decision. They seem more reasonable functions to be cormbined in
(9.5.2) than the V7, because these depend on arbitrary units of measurement,
which are removed by the V (min) from the relative measures Celin;.

4. Next the separate relative losses for the various statistics g must be
combined into a joint loss function. For this combination some relative weights
of importance

T(with I, = 1) are assigned to the statistics (g) for any set of allocations (ny)
of the sample sizes:

1+ Liny = SI0 + Looy) = LI ECHn, (9.5.2)
= §ELC.lm; = BZin, .
First, the order of summation was merely changed and then the new variables

2% = EngCg? were created. These 2,2 can be computed after the relative
measures [ are assigned and the Cgizlni computed.

5. Finally the function 1 + L(n) = L2%n, can be “optimized” for the
anacations n;, in order to yield the combined compromise solution of the minimal
weighted loss L1 L.(n;) for the fixed total cost ICxn,. This solution is similar to
“gptimal” allocation of the n; to strata in the simple univariate case (5.6):

PR AN . (9.5.3)

For fuller justifications the reader may lock at some réferences [Kish
1976; 1988; 1965, 8.5; Cochran 1977 5A.3-4]. However, some assumptions of
the model may be briefly discussed here. a) The veriances E;C/n; relative to
a minimal V %(min) are used deliberately, though other functions of variances
may also be substituted. They seem to provide the best bases to standardize
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the variances for units of measurernent before combining them; they also seem
to provide good bases for assigning the weights Ig for velative importance. But
there may arise rare cases when very small values ng(xnin) in the
denominator would cause some rating to become wildly large and unstable;
then those ratios or their 1, should be assigned arbitrary values or removed. b)
Ansigning relative values Ix may seemn both arbitrary and difficult; but,
compare that to the difficulties of its two alternatives. Univariate allocation
amounts to assxgmnglg = 1 to the single “principal® purpose and L=0wal
other purposes; our method includes that as a special case, which would seldom
be chosen willingly. On the other hand, the “combined optima” (8.4) assigns
arbitrarily equal weighte of importance to all purposes (Ie = 1/G) and then
would try to satisfy all of them, if it could; this method also demands specified
values of Var(y,) for each purpose, a difficult and unrealistic task, indeed. c)
The method also needs estimators or'guesses about parameters like ngDgz, as
in the unipurpose case (9.1}, but many more. In a realistic situation this may
be done for several critical and contrasting types, chosen so as to “rfepresent”
the spectrum of all important purposes. d) The method relies on linear
combinations of sums of squares of variance components. It would be difficult
to circumvent this model, so common and useful in statistics.

Compromises can be shown w be generally feasible and worthwhile,
because allocations and losses are insensitive to moderate changes in the
weights L. Changing the relative weights by ratios of 2 or even 5 is less
drastic thar; by the infinite ratios implied by Ig ‘of 1 or 0 in the “combined

opiima”; insensitivity to weights is cormon in statistics, e.g. in regression.

Compromise solutions are applied in Table 9.5.1 to two numerical
illustrations of allocations of sample sizes between domains. It is assumed for
gimplicity that ng, Dgz, and ¢ are constant between domains; this holds
approximately and on the average for many variables. In part A the two
domain sizes stand in the ratic W/W, = 0.8/0.2 = 4. For the overall mean
the optiral allocation would be « mW;, proportional to the W, (thus f; = f,)
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yielding the optimal IW,¥, = 1, but incurring the increase to 1.56 for domains
and comparisons (line 1). These are all in relative terms 1 + L{n;). On the
other hand, equal allocation (m; = m, = m/2) incurs EW,¥; = 1.36, but yields
the optimal 1 for domains and comparisons (line 2). The optimal compromise
for these cases is m;x\/w.2 + yu?) and the increases are reduced drastically to
only 1,116 and 1.080 respectively (line 4).

A more spectacular case of 133 countries, renging from 0.2 million to
over 100 millions is investigated in B. This 500 fold range in relative sizes is .
closer to the ranges (50 or 100) often found among provineces of countries. The
loss ratios, of 6.86 for separate means and 3.34 for the combined mean (on
lines 1 and 2), are shown (on line 4) to be reduced to 1.28 and 1.31 respectively
by the compromise allocation proportional to W. Lines 5, 6 and 7
show how well the compromise works even with different I, [For more details
see Kish 1987, 7.3; 1976; 1988].

9.6 FEASIBILITY AND PRACTICALITY

It is difficult o write about practicality without becomh;ag banal, or to
generalize about feasibility and yet be relevant in specific situations.
Nevertheless some brief reminders may help some readers to learn from the
mistakes of others rather than from their own mistakes [Kish 1965, 8.4;
1977,

a. Simple designs, when feasible, should be preferred over complex
designs. Element sampling, when good lists and low coste of collection allow,
facilitates simpler analysis than cluster sampling. Complete clusters from a
single stage selection is simpler than multistage, when element sampling is not
feasible. EPSEM, equal overall probabilities f for all N elements, allows self—
weighting analyses, without the complexities of weighting. When constant f for
all elements must be abandoned, try next for simple ratios such as ixf or 4,
where the i are integers deveting simple ratios of selection probabilities, which
simplify weighting or imputation. Reasons for these guidelines appear in
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appropriate sections. However, we must emphasize that simplicity is most
needed in the field procedures, less in office routines, and least in @he work of
skilled statisticians, '
Simple, visible boundaries for segments arve stressed in area sampling.
Nevertheless, recognizing these from sketches, maps or aerial photos becomes
“gimple” only relatively and only after adequate training and experience.

b. Sturdiness or robustness may be other words for simplicity above, but
they sre meant to emphasize lack of sensitivity to moderate deviations in
actually achieved conditions from those envisioned in the design. Thus,
sturdiness is useful especially for multipurpose designs, plus others that arise
only later, during the analysis, To the suggestions under simplicity we may
add paired selections of PSU’s and simple replicated samples.

Different selection procedures viay be used in different domains to better
fit them to local situations and resources (although the measurements must be
standardized). For example, for selecting dwellings in the central city element
saanpling (PRES) may be used, whereas cluster (multistage?) sampling may be
needed in remote rural areas. Mevertheless, in general a single procedure for a
team of enumerators at one collection time may be safer than several, each of
whicix may be better in separate doroains., Perhaps two or three procedures
may be taught to a well trained field team.

€. Pﬁcﬁml field instructions are essential tools for making the actual
sample to approximate the sample design. Procedures should be simpler, and
instructions more extensive and detailed, ard the trmmng more thorough, for
field enumerators who are not expert, have little trammg or experience, and
who work far removed from central control and guidance of experts. On the
other hand less training time and shorter instructions may suffice for experts
and also for enumerators working close to ezpert guidance,
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Instructions cannot be perfect or complete. Maximize the amount learned
rather than the amount “taught” (presented); the longest, most complete books
of procedures do not lead to best performance, within training periods limited
by budget. Train them to handle well the 85 or 99 percent of ordinary cases
and to know enough about the exceptions o consult the instructions, or the
supervisor, or the central office. “In writing instructions use the imperative
tense; it is clearer. Put the instructions in gimple outline form, not in long
parratives. Underline or capitalize the essential points. Provide headings and
stubs that facilitate rapid references to the needed sections. Write for the field
workers and not for fellow statisticians. In providing ideas, arrangement, and
language, put yourself in the field workers’ place and see them with their eyes.
Perhaps ask one of them to help rewrite the instructions. If practicable, pretest
your instructions; or borrow them from good scurces. Whenever feasible, give
the purpose of each step in simple terms, to motivate the interviewer and to
provide needed fexibility through understanding” [Kish 1963, 8.4B].

Complex feld procedures may often be divided into separated tasks, 50
that the field worker can concentrate on each in turn. Specifically, field listing
(of dwellings, holdings) may be separated form the main, intensive
interviewing. Those two tasks may be done by either the same enumerators or
by two separate, specialized crews. The increased costs of those two

separations must both be taken into account.

You may also include negotive instructions about what should not be done
in spite of temptations for the naive. Example were shown for the four frame
problems (4.2). We alse end here with two negative instructions about.
ingtructions. Do not just send out interviewers with the instruction: “Go and
find & random sample!” That violates all rules, being neither simple, nor clear,
nor adequate. Also don’t imitate the statisticians who said:*“I wrote a perfect
set of instructions, but they were widely misunderstood by the ignorant
enumerstors.” Instructions are not good or bad in the abstract, but only in

relation to the available human and material resources,
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d. Raadom numbers for field work need careful preparation unless a)
statisﬁcians; or skilled professionals select in the field, or b) all selection takes
place under close supervision, in the office. Both of these provedures can often
be too costly, but we must warn that selections from tables of random numbers
by enwmerators in the field are difficult to trust and check; and some biased
results have occurred from unjustified trust.

Random numbers should be selected in the office and sent to the field in a
simple form, easy to sux;erviaé and check. Sometimes it may be fessible to
establish a fixed order for listing the units that leaves little room for doubt or
personal choice and is easy to check. Otherwise conceal the selection numbers.
until after the lst has been prepared, so that the selections will be “blind”
(10.8). Selection numbers may be concealed behind tapes, or they can be
sealed in envelopes, kept closed until the listing is completed. ' '

Systematic selection is easier to apply and to check than random choice
After the random start and the selection interval are removed from the sealed

envelope, the enumerator can be trained and trusted to apply them properly ~
usually, but this too must be checked.

e. Fix sumpling rates f, not sample sizes n. Easier selection provedures,
with systematic sampling above, is one reason for the preference. But others
have also been noted elsewhere in connection with unknown population sizes
(7.7) [Kish 19771, ’

f. Pretest all provedures: in the field: this is desirable and evén néces&ary,
unless the procedures have been used before in similar situations and with
similar field staff. This need is widely recognized for questionnaires, but
sampling procedurss may salso need them if they are new or changed.
Furthermore, a double need may also arise. The statisticians in the office may
need field experience with new procedures. However, that experience cannot
substitute for the perception and application of those procedures by the
nonprofessional field enumerators, who will actually collect the date.
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g Sequentinl control of sample size often may not prove practical or
economical in practice. It may seem desirable to be flexible with sample sizes
in the face of unknowns during the design stage: size of the population N, the
variance factors S2 and D2, the unit cost ¢, the rates of nonresponse and

nenCOverage.

Sample size should not be conitrolled by limiting the response rates, because
every reasonable effort should be made to keep this as high as possible.
Cutting off responses will often result in bias, because early responses do not
constitute random samples. Also, it is usually not economical to randomize the
order of field collection.

Sometimes it ;nay be possible to design a maximal sample size, subselect
a proper (random) sample of minimal size, and from the difference, n(max) ~
n(min), send out a proper (random) supplemental sample. However, the two
samples will represent separate times and efforts. This may be undesirable or
too costly.
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CHAPTER 10. AREA SAMPLING
10.1 AREAL FRAMES FOR DWELLINGS, HOLDINGS, PLOTS

Area sampling is commonly applied in many situations because it uses
practical frames and listing procedures for dwellings, holdings (farms) and
parcels in agricultural surveys; also for other populations, e.g., stores, traffic,
trash, pollution, noise, rocks, bacteria, etc. Populations of dwellings serve
directly for varisbles like howe gardens, rooms, furnaces, toilets, kitchens,
stoves, TV sets, ete. But, more often other populations can also be assoviated
with dwellings: holders, families, persons (adults, children), domesticated
animals (cats, dogs), fies, private autos. Dwellings have also served often to
identify agricultural holdings. ‘

Area sampling can also be used for sampling directly holdings, farms,
and plots, also the crops, orchards and timber that grow on them; also the
domesticated animals and poultry located in barns, stables, pens, and fields on
them.; and fisheries in ponds and tanks; even wild flora (mushrooms, herbs) on
themn. However wild fauna (deer, rabbits) cause problems because of their ‘
mobility.

Ares sampling depends on “unigue, adequate, essy” identification of
specified populations with small area segments of the earth’s surface; the (* )
guotations around the above adjeétives refer to common imperfections in those
relative terms, which must be restrained. However, such imperfections can
overwhelm the utility of area sampling in some types of situations. a) Three
dimensional mobility can be difficult to overcome: fish and aguatic animals in
oceans, lakes and streams, and Aying birds and insects may be too diffcult to
identify with ordinary area sampling. b) Extreme mobility makes it difficult to
cover wild animals (deer, wolves), nomkds, homeless persons, and frequent
travelers. ¢} Penel studies must overcome relative mobility over the longer
periods. o) Multiple identifications can cause problems: two parcels of one
holding, two homes, extended vacations, seasonal laborers who live both on
distant farms and at home, ave all examples of potential problema.
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Farm holdings and operations are particularly subject to double or
multiple identification. Some holders may have parcels and holdings in
different segments, perhaps widely separated, even in different districts or
provinces. Also two or more partners living apart may operate ene holding
{11.5)

Area sampling is based on frames for farms, holdings, dwellings and
persons, which are relatively convenient and effective for several ressons. 1)
With office mapping procedures the entire population of ultimate units
(dwellings or holdings) can be readily identified with defined listings of blocks
and segments. 2) These small areal units can usually be linked into an entire
hierarchy of geographical/administrative units, which possess and provide
identification, stability, and useful auxiliary data: E.D.'s, districts, provinces.
Such data from administrative records and from censuses are useful for
measures of size, stratification, ete. 3) The identifications persist from the
listing time through the survey’s collection period. 4) Field enumerators can .
identify “clearly and readily”™ block and segment boundaries and the units
(dwellings, holdings) within them. §) The units serve as a convenient link for
sampling persons, because they are readily identifiable, reiaiively stable, and
usually contain few persons, each of which can be identified uniquely with one
and only one dwelling. Dwellings often serve as small clusters of persons, and
similar unigue identification can also be made for many other populations. For
populations that lack these conditions area sampling is less useful. The
following sections provide only brief guidance and further details appear widely
seattered [Kish 1965, Ch. 91

_ Area frames and sampling have two aspects: First the frame provided by
the available hierarchical identification of administrative boundaries: e.g., a
© country divided into “provinces,” these into “districts,” these into “villages”™ or
“E.D.'s” and so on; second, the field identification of the survey elements
{dwellings, holdings, parcels, people) with area segments. Surveys commonly
use both aspects, but they may use only one. For example, the administrative
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frame may be applied to an available list of specialized holdings. But a valley
containing a crop, for example, may be segmented from serial photographs
without use of administrative boundaries. Both aspects are commonly applied
in ares sampling.

'10.2 PREPARING MAPS

In segmenting and nurcbering maps (or serial photos) several necessary
tasks must be done together. Just what thosse tasks are depends on resources
and situations, because sometimes the maps and materials may already be
prepared. For example the ED.s of a recent Census may be adegquale,
supplied, accepted, and used with their boundaries clearly marked and with
measures of size provided alse. Thew perhaps the survey office needs only to
prepare stratification and to updabe'and to correct some measures of size. If
the E.D.s are too large, they may be segmented either in the office or in the
field., Instead of E.D.)’s, the Census may provide city “blocks,” or political/
adminisﬁaﬁve subdivisions. Howewver, below we assume only basic situations
where one must begin only with detailed, local maps that show many features,
including probably farm houses. We hope that more up—to-—daté, and detailed
aerial photos are also available to help to identify boundaries and to help in
counting holdings.

Boundaries for the population aren must first be defined and this seldom
comprises a single, entire, contiguous surface. It may consist of many
separated islands (e.g., in the Philippines, Indonesia). It may exclude many
large lakes, inaccessible regions, military reseyvations. It may also exclude
areas where the experts can confidently expect only negligible fraction of the
survey population (holdings, or specific crops): urban arsas, deserts, or wrong
kind of soil or climate. In those areas great cost would be expanded for
negligible yields and a “cut—off” exclusion can be used instead. These
exclusions may be extensive and important in agricultural surveys; for some
specigl crops most of the national territory or most of the population (e.g.,
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urban) may be confidently wded. The population area in the following is

assumed to compromise a “primary enumeration area” to be covered by a team
of enumerators, perhaps residing within its boundaries, but not necessarily.
This area may be only a primary sampling unit selected from a larger
population. '

Segmenting the entire area into blocks or segments must concentrate on
two primary tasks: defining good boundaries, but for small and roughly egqual
populations., This must be done quickly and with incomplete knowledge; those
tasks pose difficulties. The terms “blocks” and “segmenis” are used here to
help deal with difficult contradictions: blocks refer to areas with good,
identifiable boundaries, even if the areas are larger and more unequal than
desirable for final selection. Segments should be small and similar enough in
size to serve as complete clusters for final selection, even if their boundaries
need more care and skill for feld identiﬁéation. Thus it may be necessary to
define only biocks in the office and leave the final segmenting to the feld

enumerators.

Boundaries should be lines rather than areas in the sense that they must
not contain elements (dwellings, holdings). Thus, streets, roads, rivers and
lakes make good boundaries if there they contain no elements; but not where
people live on houseboats or on the streets. Where people live only in villages
and cities even the open country between them can be regarded as empty

boundaries (like the ocean).

Use existing identifiable “permanent” physical landmarks, either natural
or artificial, for good landmarks: streets, roads, rivers, irrigation ditches, power
lines, The envmerator cannot identify a long, arbitrary, imaginary line drawn
on the map. However, the inhabitants of dwellings in many places knew to
what administrative area their own dwelling belongs. The boundaries must be

drawn except where they are obvious.
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Numbering and stratifying may be done at the same time when the
stratification is geographical, Serial numbers within the blocks can accomplish
three tasks simultaneously: identify them, establish their list, aséig‘n them
measures of size (MOS), and stratify them. The numbering should anticipate
the met.hbd of selection, especially when systematic selection follows., Selecting
with the interval F selects a pair of numbers from every impliit stratum of 2F
oumbers. Furthermore, a serpentine order of numbering may yield some
desirable stratification within that.

Measures of size and numbering may be assigned jointly if the measures
(MOS) are simple and small integers, perhaps single digits, 1 to 9. If recently
prepared, detailed maps and area photos identify the elements (dwellings and
holdings) reaaonal{ly well, this may be fairly well accomplished. But not in
other situations: where maps are too old or fail to mark the elements, whex;
dwellings are crowded in villages or cifsiea, ete.

In those situations assigning MOS must be separated and done afier the
blocks have been numbered and listed. The MOS may be assigned from
records (census or administrative), or with field work. This will be costly, and
some rapid methods, such as driving, cruising arcund the blocks, are often
uged.

10.3 COMPACT SEGMENTS VERSUS LISTED ELEMENTS

For subsampling elements (dwellings, holdings) within selected blocks,
two alternative procedures are often used: compact segments or listed elements
(10.4, and 10.5). The choice depends on eight factors of which the first three
tend to favor compact segments, the next three listed elements {dwellings), and
the last two may favor either. Consider these remarks as tentative, clearly
variable between different local conditions, but useful as reminders of factors to
be considered.
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1. Coverage tends to-be more complete with compact segments because
listings, prepared hastily from the outside, tend to miss elements (dwellings,
holdings), which are difficult to recover during interviews,

2. Stability favors compact segments, which continue to reflect changes
within stable, identifiable boundaries, whereas listed dwellings or holdings
change with time, perhaps even between listing and interviewing.

3. Simplicity tends to favor compact segments, where it is easier to train
enumerators 1o cover completely the defined segménts or holdings. To create
segments in the field may require skilled training, but perhaps this may be
done separately by specially trained teams.

4. The homogeneity (roh) of elements within compact segments may be
greater than among listed elements selected around larger blocks. Thus for the
same average size sample cluster b, increases of the variance, denoted by
deft® = [1 + roh(d = 1)}, tend to be greater in compsct segments with the
greater roh. This factor becomes less important for crossclasses and their

comparisons, because of smaller b.

5. Variations in sample size with compact clusters has two sources. The
gegments vary in size due to searches for good boundaries and to imperfect
maps. Even greater may be the effects of using random numbers of segments
per block. On the other hand, a systematic selection can reduce the variation

to single elements per block.

6. Screening operations, which can be done from the outside, may be less
expensive if connected with the listing operations around the block. However,
the operation and the comparison of costs become more complex if they involve

interviews within the dwellings.
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7. Costs per element may be less for complete segments, because
preparing complete lists for entire blocks may be expensive. Howeﬁyer, this
comparison varies between situations. Listing costs are relatively less where
sampling rates within blocks are large (shorter intervalz) and where the listings
get reused for several samples.

8. Social interoction among neighboring people may be greater within
compact segments. Some surveyors fear higher refusal rates and also the
“contamination” of responses. But clear evidence for those conjectures is
lacking and in some situation the data collection may be facilitated by
interaction; first, information from neighbors may help in planning callbacks
and also in screening; second, favorable interaction may even help the

response rates.

10.4 INSTRUCTIONS FOR COMPACT SEGMENTS

‘ Three criterin should guide the creation of compact segments.
Compromises among these criteria are needed, beeause they conflict in actual
practice. Instructions are needed for these compromises for the workers in the
office and in the ﬁefd. With gobd maps and aerial photos, most of the
segmenting may be done in the office, but otherwise and elsewhere, trained
workers must divide the blocks or E.Ds in the field. This shouid be done
preferably before the main interviewing in order to facilitate selection in the
office, but cost consideration may force combined operations for segmenting,
selecting, and interviewing. But this would require skilled and trusted field

workers.

1. Determine the desired average size of segments as a compromise
between increased variance (deft?) and decreased costs of larger segments. But
remember that statistics for crossclasses suffer proportionately less from the
variance increases (8.4). Consider also the possibly lower coverage binses from
larger segments both because of clearer boundaries and because of lower ratios
‘of marginal cases (11.3).
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2. Create segments of roughly equal size, in mumbers of dwellings, or
other elements. This task is more difficult for holdings and other elements than
for dwellings, when identified and counted on maps or from the outside. Size
 variations becorme even greater when a screening operation within households
is needed to find subclasses.

3. Use clear, identifiable, stable boundaries: roads, streets, rivers,
irrigation ditches, tree lines, utility lines. Sometimes arbitrary straight lines
must be used between two well~fized points, where lines are short and
through thinly settled areas. If clear boundaries canmot be found, create
segments of double or triple (or k—tuple) sizes; these may have to be listed and
subsampled with rates of 1/2 or 1/3 (or Uk). Thus, compact segments may
need to be modified to occasional listing, especially in the presence of dense
settlements and multi—dwelling buildings. These have been called “take—
part” segments. ‘

Most often the segments must be created in the field, then brought into
the office for checking and for selecting the sample. Irregularities and mistakes
are corrected; oversized segments and listings are divided; undersized segments
may be combined (7.8). From the numbered lists of segments the sample
segments can be selected with the within—block intervals, and sent out to the

field for interviewing.

“On the other hand, if the travel to the block is relatively expensive, we
may want to combine the three distinct tasks of segmenting, selecting, and
interviewing (or at least the first call) intw one step. This requires proper

training of field workers for the three tasks, with emphasis on preventing

ts

unconscions biases in selection. The interviewers must assign a specified order
when numbering the segments they create, or segment numl?ers selected in the
office must be hidden ~ either in envelopes or behind black tape — and
revealed only after the interviewers have assigned their numbers to the
segments. The selection numbers must run comfortably beyond the expected
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average number to allow for ressenable variations in numbers of segments
'found in the blocks. Extracrdinary large blocks, however, are best reported to
the office for checking and handling” [Kish 1968, 9.54A1

Control of sumple size may be obtained by separating the two procedurss.
The first concerns assxgnmg measures of size (MOS) to the segments together
with clear boundaries. In the second, the segments are combined to form
“pesudo-—segments,” not necessarily contiguous, so as to reduce variations in
measures between them. Furthermore, the numbers of these crested units
may be exactly kF}, so that exactly k units will be selected with the interval
Py, thus the rate UF,,

Quicker, cheaper procedures of segmenting are often needed, when the
procedures above for blocks or E.D.s ave too expensive. a) Villages may be
divided into presssigned number of “segments” along identifiable streets, on’
sketches prepared in the field. b) Creating segments from buildings {e.g., using
floors of high rises) has been used and described [Kish 1965, 9.7]. ¢) Segmented
tistings from dwelling listings of blocks has been used also [Kish 1865, 2.5D]
d) Creating segments from listed buildings may be used when buildings may be
readily listed without entering them, and only a sample of them needs to be
segmented [Kish 1965, 9.7]. e) Creating “segments” from alphabetical and

sirnilar registers has been described earlier (7.3).

10.5 INSTRUCTIONS FOR LISTING BLOCKS OR E.D.S

Instead of creating compact segments, a sample of blocks or E.D.’s or
villages or other identifiable swmpling units, may be assigned for complete
listings of its dwellings or holdings or other elements. Here we refer to blocks,
and assume clear and identifisble boundaries for them; also that the elements
are dwellings that may be distinguished and identified (numbered or deseribed)
from the exterior, without entering them for interviews. For other elements,
such as holdings or families or persons, a brief interview may be needed for
serepning and lsting [Kish 1965, 9.6].
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1. Begin listing at the place on the block marked with an X on the
Sketch Sheet, usually the NW corner. Proceed in the direction marked with —
on the Sketch Sheet; usually clockwise, so that the sample block is on your
right side as you walk around it. You must cover the entire bleck inside the
boundaries and nothing outside it. Be sure to check all roads, streets and alleys
on the block for possible dwellings, going in and out of them and listing them as
~ you come to them. Also look for dwellings away from the sireets but inside the
block. Please explain unusual locations, alleys and dwellings on the Sketch

Sheet.

2. List the address or description of each dwelling on a separate line of
the Listing Sheet, proceeding around the block in the specified order. If there
are more dwellings on the block than lines on the Listing Sheet, use
Continuation Listing Sheets. Watch for obseured dﬁreﬂings behind shops or
above stores, in a barn or garage in the yard, etc., and list them. Watch for
dwellings away from streets, in the middle of your block. Look for and list
multiple dwellings in houses, searching for clues: entrancés, doorbells,

mailboxes, ete.; sometimes inquire briefly.

3. Local and specific instructions are needed for amWnt houses, hotels,
rooming houses, trailer camps, irregular slum settlements, etc. In buildings use
their systematic numberings of dwellings, if these exist. Otherwise: a) List
bottom first and work up. b) List dwellings on right first then left. ¢) List front
dwellings first, then the rear. d) The ground (street) floor is called “frst,” then
the second, ete.; (this differs in some countries) e.g., a dwelling above a store
would be “second floor above astore.” In case of doubt, include a skeich with

explanation.

4, Write descriptions of simple, visible, stable fentures when street
numbers and dwelling (apartment) numbers are lacking.

8. List vacani dwellings, doubtful dwellings, ond dwellings under
construction. Vacant addresses cause little harm, but missing dwellings is very
barmful,
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CHAPTER 11 SELECTION PROBLEMS AND METHODS

11.1 DUAL (MULTIPLE) FRAMES

“In sample survey methodology one often finds that a frame known to
cover approximately oll units in the population is one in which sampling is
costly, while other frames (e.g., special lists of units) are available for cheaper
sampling methods. However, the latter usually enly covers an unknown or
ondy abproximately known fraction of the population...For example, the 1960
Sur"vejv of Agriculture of the Bureau of the Census uses two frames, mainly (A)
a frame based on conventional ‘area sampling’ approach; (B) a frame of farms
conceptually and operationally ‘associated’ with the A1 listings of the last
(1959) Census of Agriculture...the combined use of these frames proved a
successful combination for simulating screening and providing coverage”
[Hartley 1962,

“Some units would have a chance of entering the final sample through
both the list frame and the more complete frame, while others could enter the
sample only through the complete frame, The optimal allocation of sample size
to the frames must usually be made in a situation where the frames cover
different portions of the population, where they entail different data collection
costs, where the element variance of the survey variables might differ across
frames, and whex:e the efficiencies of possible sample designs vary across
rames” [Groves and Lepkowski 1985].

“The Sample Survey of Retail Stores” in the USA used lists for large
retail stores, supplemented by area samples with lower sampling rates for the
smaller stores [Hansen, Hurwitz and Madow, 12.4]. This survey also had two
other features, described in detail: (a) it was confined to 68 PSU’s to reduce
costs of data collection; (b) it was essentially & multipurpose sample of 9 kinds
of business groups, such as automobiles, food stores, and gasoline stations
filling stations.
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It is convenient o concentrate here on dual frames of a special list (L)
plus an area frame (A). This is more common, but the method can be
generalized to several frames; for example, to several lists (Ll,' Ly, Lg...) plus
another frame that is fairly complete, which is often an ares frame, but not
necessarily. Some alternatives about the frames and the ’sé.mples may be
answered by considering the four subsets: AL, the overlapp'mgy elements
present in both frames; AL, present in A but absent from L; AL, present only
in L; AL, absent from both frames. (a} From the L frame one may select a
“complete” census L or bnly a sample [ (b) Similarly, éither the entire A
frame or only a sample a majr be used. (¢) The sample may either include the

overlap ol in the sample or exclude it and use only al + &L

The list L may have been obtained from a previous census or sample; or
from a list of telephone owners; or from a widespread farm cooperative; ete.
The formulas for efficient (“optimal”™) allocations among the three sets (AL, AL
and AL) would be oo time consuming here and they may be found in
references, But we must distinguish three different approaches to the stratum
AL of possible duplications. (1) They may be excluded altogether. In
supplements for nonresponse (b below) they would be excluded, of course. But
large units selected with f; may also be excluded, with some screening expense,
from area samples of small units selected with rates f,. (2) On the other hand,
it may be less expensive to permit the units from the L sample, selected with fy
from the list, to also appear in the A sample selected with fy. Thus the
combined probability of the L units becomes £ + f, = f(1 + £J/f), with
f, >‘fa. For example, if f, = 0.2 and o = 0.01 then
fi + f, = 0.2(1 + .05) = 0.21; and this may be more practical than trying to
sereen out.the L units from the A frame. () The above allows for duplicate
selections of the same units from both frameé; a rare event when both ratios
are much Jess than 1, and independent. This problem can be easily treated by
duplicating the data for these rare events. But they can be eliminated from the
sample, and the units of the L strata ave then selected with probability
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f + £, = £,f, assuming independence, and appropriately weighted in the
estimates. In the above example this would be .2 + .01 ~ .002 = .208 for the
L units,

We concentrated here on the use of an area sample for the A frame for
being more complete, but alsc more expensive per element for the list frame L.
However, the method also resembles other combined éamples treated
elsshwere, (a) For example, ! may be responses on a telephone or mail
surveys, and ¢ may refer to efforts to find nonresponses or the nonresponses
plus noncoverage of telephones (15.4). (b) Or ! may represent an imperfect
frame and o the efforts to supplement it (11.2). (¢} L may refer to a census
and o to the post—enumeration—survey (PES) to correct for responses and
perhaps also for noncoverage (17.4). (d) ! may represent a survey of crop
vields, and o some srhaller sample from the [ sample of more expensive crop
cuttings to calibrate I, which may or may not attempt a better coverage (12.3).
(&) The chief purpoée may be to estimate those AL missing from sample data
by using two “independent” frames a plus [ and their overlap ol (11.9). This
use of the dual frames, often called the C~D or ChandraSekar— Deming
method, estimates the guadrant smissing from both frames with
AL = AL * AL/AL, using sampie estimates of the three observed quadrants
and assuming independence between the two frames [El--Khorazaty et all,
1877]. () Similarly, independence of dual captures is often assumed in
cupture«--arempt.‘w'e~ methods for estimating fish and other mobile populations
[Darroch 1958]. Atternpts have been made for both of these methods to modify
the independence assumptions and to apply them to hwman populations. (g
Some survey population may be defined as the sum (union) of elements on any
of several overlapping lists but without the replications. For example, farmers
who appear on the lists of any of H farm cooperatives may define a combined
farm population; or “social scientists” may be defined as members of one of five
national associations. Replicates can be removed with sampling methods used
in some efficient order [Kish 1965, 11.2D). (h) Replicate listings in different
forms have been covered earlier (4.4). () Multiplicity sampling is the name
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used for techmiques to increase probabilities of selection by defining several
identifying informants for rarve populations. For example, annual new births
may be reported not only by the mother, but alse by her sisters (or siblings)
[Sirken 1970} ‘

11.2 SUPPLEMENTS FOR THE MISSED, NEW, UNUSUAL '

This topic is related to dual fx;ames, but with a more specific remedial
view. It is also treated briefly earlier (4.2), and then later under Post
Enumeration Surveys as adjuncts to censuses (17.4); there are alsoc many
different sources of reference [Madow ot al 1983; Kish 1965, 2.7A, 9.4C, 11.5,
12:6C, 13.3]. The scale and nature of the remedial procedures to be used
should depend on several aspects, each of which presents alternatives. () The
principal aim may be either to supplement the principal sample, or to measure
the portion missed, or w improve ’future surveys. The PES attached to
censuses aim chiefly at measuring errors, whereas dual {rames and this section
aim at supplementing the main sample. (b) Both here and in dual frames we
aim chiefly at cumulating (aggregating) cases rather than combining the final
statistics from the two samples. (¢) In some situations the survey procedures
in the supplement may be similar to procedures in the principal sampie; but in
others some distinet procedurés may be more appropriaté for the ‘supplement.,
for reasons of either cost or feasibility. Perhaps even a separate team of
enumerators may be used for the supplement. Alao maﬂ ar mlephone
interviews in the main frame, and doorswp interviews in t.be supplement can
be combined. (d) Simultaneous collectxon may be used for both sampl s, but
often the supplement is coﬂecbed later than the main aample {e) The main
sampling rate may be uaed also for the supplemem, but often a smaller rate
may be set fm' supplements ) The supplemental samples usually exclude
those in the main frame; whereas in dual frame designs the second (area)

frame may include those on the list frame.
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We must assume that the main frame has covered most elements, and
that the supplement tries to cover a small but nonnegligible noncoverage p,,
say perhaps .02<p_<.20, of the population. If p.>0.20 the main procedures
need improving; but if p,<.02, it may be futile or too expensive for most
surveys to search for them; but those arbitrary limits are only illustrative.

Four important matters related to supplements must be mentioned,
although they arve treated elsewhere. (a) Nonresponses can also be treated
with techniques that resemble supplements (15.4); noncoverage by the main
frame is the cbjective of the supplements in this section. (&) “Overcoverage”
may also occur in some situations (15.3). (¢} “Surprises” from sampling units
that are discovered in the Seld to be “too large” cause problems that may also
be treated with a stratum or supplement [Kish 1965, 13.4]. ‘

(&) Linkage procedures may be used to supplement listed units (e.g.
dwellings) with units that have been missed or newly added (built). These
procedures, also called “half-—open intervals,” specify that in addition to the
selected units, the intervals (spaces) following selected units up fo but not
including the next listed units be searched for adding any units thus discovered
[Kish 1965, 9.61). Thus, the selection probability of the ith listed unit f;, is also
given to any unit found between unit—i and unit (G + 1), and the missed, and
new units would be added at the time of enwmeration, without the need for
special supplements. For the procedures to work well, three conditions are
needed that are lacking in many practical situations. (1) The missing or new
elements must appear alone or in small numbers, and not as large multiple
dwellings, for example. (2) The units (dweilings) should be located in linear
order, so that “next” and “up to” have definite field identification, and not
spread out in two (or more) dimensions. (3) The enumerators must remain
alert to discover those missing units, which appear rarely, perhaps only once or
twice in a hundred; but enumerators are often wo absorbed in other tasks. For
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all these three reasons the lm]nng procedures have disappointed some who used
them without actusl feld trials; but they seemed to have worked well in other
situations.

Procedures for conmstructing supplements must be suited to specific
situations, which may vary widely, as shown by a few examples. (a) Samples
of holders (pessants, farmers) from villages may be supplemented with (1)
holders located in the open country between villages; (2) holders living in cities;
(8) nomads; (4) special samples in deserts or jungles or distant islands. In all
those places the procedures for the main frame may be unsuitable and the
supplements need different procedures. (b) Samples of persons from dwellings -
may be supplemented with persons living in institutions, in prisons, in school
and university dormitories, in the military [USCB 1978, Appendix H]. (¢}
Samples of dwellings may also need supplements with special procedures for
mobile homes, trailer camps, boat houses. Some of these procedures may be
too expensive for small samples, and the institutional population, for example,
may have to be excluded from the survey population. (d) Samples of youth
selected from scheols may need supplements for students in .special schools
{private, religious, rernedial} and for youth not in schools (sick, working,
delinquent),

11.3 SIZES OF SELECTIONS OF BLOCKS AND SEGMENTS

When applying selection rates wif.hiu PSU’s (e.g. districts, cities, ete.)
two kinds of random variations in size occur commonly: in the numbers of units
selected and in the sizes of those units. By units we mean clusters like blocks
or segments; where the elements (e.g. holdings or dwellings) are listed for
entire PSU's the variations in size of the actual sample by around its expected
size should be relatively small. "
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However if, for example, a selection rate of f; = 1/20 is applied to 54
blocks, either 2 or 3 blocks will be selected, a large variation of 1 around the
egpected size 54/20 = 2.7 blocks. Furthermore, the block sizes also vary in
size, and techniques for dealing with these problems exist (7.4).

When designing PPB subsampling within blocks with the variable rates
 b*/Mos,(intervals of Mos,/b*) some difficuities are often encountered [Kish
1965, 7.8]. Let us suppose that the designed sample size is b* = 8 dwellings
from the blocks. First, some of the blocks may be undersized, insufficient, when
sizes Mos, < b*, (measures less than 8) are assigned to the block. In those
blocks the sampling rate would be b*/Mos_> 1, which are not feasible. One
may choose from several alternative remedies before selection: create separate
strata and procedures for all blocks with Moes, < b* and select all those blocks;
or assign arbitrarily Mos, = b” for all block units with Mos_ < b* and accept
this added variation in size of subsamples (both methods increase the number
of blocks in the sample); or link all these blocks with Mos, < b* with others
before selection so as to create combined blocks, all with Mos, = b*.

When these steps before selection are too cumbersome or for too few
blocks, two remedies remain after selection: create linkings with an unbiased
procedure after selection; or assign weights b*/Mos,, to all B, elements in the
bleck (f block has 6 dwellings, either all dwellings get weights 8/6, or 4
dwellings get weights of 1 and a random 2 dwellings get weights of 2 for total
estimation weight of 8) [Kish 1965, 7.5E]. Blocks with Mos, = 0 would be
embarsssing uniess they can safely be excluded and not searched. MNote also
that the mintmum block size may be set not at b* but at kb*, if the selected
blocks must serve k samples of b* each.

On the contrary, blocks that have measures much larger than the needed
b* {or kb*) could require too much work in listing and a two-stage procedure
may be introduced to reduce that work. Furthermore, there is no need to allow
measures greater than the stratum size M, because with Mos, = M, the
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block can be selected automatically as a “self—selecting stratum” and the
two stages of selection can be compressed into one; that is, (Mos/M;) x
" b*/Mos, = 1 xb*/M, for those large blocks.

Different problems arise when blocks are discovered (afler) selection to
be too large; that is, selection with rates b*/Mos, would yield too large
samples, because the actusl size N is much larger than Mos_. From periodic
or repested samples one may “borrow strength” by combining their surprises
into a “surprise stratum” and select diluted samples from them [Kish 1965,
12.8CL

11.4 SELECTING ADULTS FROM DWELLINGS

Dwellings are commonly selected with EPSEM rates f, and if the
pepulation elements are uniquely identifiable with the dwellings they also
receive the same probability; for example “head” or “homemalker” of the
household. Furthermore, if the small cluster of elements are all included in the
survev, they all also receive the same EPSEM f. For example, in labor force
surveys information about all persons over 16 years (in some countries) in the
‘household is obtained from one “responsible adult” (the observational unit).
Similarly the homemaker may give information (about health, nutrition,
education) for all children between specified ages. Most households contain
either 0 or 1, seldom 2 (rarely more) women of child-—bearing age, and fertilivy
studies usually include both women in those few dwellings. Including all
elements from small clusters (not only from households) seems generally
proctical and efficient if any one of these conditions hold: (1) Only a small
portion of clusters have more than one element. (2) Information about all
elements can be obtained simultaneously, reasonably cheaply, and
“uncontaminated.” (3) There is no large positive intraclass correlation between
elements in ;he clusters. However, selecting all elements should be avoided

when none of these conditions hold,
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For many surveys of adults, a single adult from each household is
commonly selected, especially for variables that arve highly corvelated and/or
“contaminated” in the interview process. Such procedures depart from
EPSEM, because the probability for adults becomes f/P;, where the P, are the
numbers of adults in the households. However, these departures from EPSEM
increase variances only little (by factors of 1.05 or 1.1), because for most
dwellings P, = 2, for most others P; = 1 or 8, and seldom more for adults.
(Selection of one person from all persons, children plus adults, is not
reasonable.) It is important to operationalize simple and adequate Beld
procedures of selection. Selection tables are available that have been used
frequently, also for telephone saﬂaples, and also for other situations [Kish 19685,
11.3).

11,5 IDENTIFYING HOLDINGS, HOLDERS AND HOUBEHOLDS

Suppose that area segments are used for sampling farm holdings and w
obtéin interviews with the holders to collect data. A specific holder, for
example, may be identified with one of the following: (a) a parcel located in a
segment a that fell in the sample, (b) or another plot located in another
segment b that is not in the sample, (¢) or a household in a village, not located
in either segment, (d) or in a city, where he is working or vacationing during

the survey period.

The above is not an extreme case of the difficulties in identifying sample
holdings in agricultural surveys. The first plot may be located only partly in
the sample segment, and most of it may lie in nonsample segments. There
may be two or more holders (brothers, father and son, partners) who live in
separate houssholds. The several plots of the holding may be located in
different districts, even different states. The presence of the holder during the
survey collection period is important for collecting the interview without
prohibitive costs. Thess problems of observation and identification also occur in
complete censuses, but many of them can be resolved by using the holders’
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names for identification. In sample surveys they must be resclved with rules
for identification, and they mostly can be, but only with good rules, care, and

training.

Dissimilar situations lead to different methods for different surveys and
in different countries, perhaps also in different provinces. Household surveys
are often used for collecting data on food and agriculture, and especially in the
presence of “integration of agricultural surveys in national housebold survey
programmes” [FAQ 1978b, Ch I and ). Identification of area segments or
dwelling listings with dwellings, dwellings with bouseholds, households with
holders, and holders with farm holdings describes the chain whose links must
be connected. Dwellings are needed because they can be identified by
enumerators from the exterior, and households define the ocoupants of dwellings;
empty dwellings are vacant, or unoccupied, or converted o other uses.
Households identify farm holders, or homemakers for surveys of food
comsumption; but many (or most) households in the segments may have no
holders, because they are non~farm households, Idehtifying dll the holdings is
the object of careful interviews with the holders. Households may be identified
not only with area segments, but also with village listings and with listings in
towns and cities. In some countries or provinces the villages may serve as
preferred clusters of households. Sampling towns and cities mﬁy allow for the
coverage of home gardens, fruit trees, and of small scale livestock farming

{(poultry, pigs, milk cows), but may be excluded in many countries.

Sampling land areas in the open country has led to publications on the
advantages of open segments versus closed segments. Closed segments refers
‘o methods for including in the sample only agricultural land and activities that
are contained within the sample segments, but all of that. For example, in the
example above only the crops and animnals located on the portion of the plot
within the sample segrent o would be covered in the enumeration of that
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segment. Closed segments may be convenient for observing growing crops.
But in interview surveys it means that activities for holdings are div.*ided‘ into
two or more portions that must be separately accounted. ‘

Open segments methods identify the headquarters of holdings uniquely
with only one segment. First, the household (dwelling) location of the holder
within any segment associates the entire holding with that one segment, all its
parts and parcels, whether they are in the sample or not. If no segment
contains the holders household (because they live in a town, city or in a
provinee outside the survey population), the location of stables, barns, and tool
buildings locates the holding either in or out of the segment. If those do not
exist in any ssgment, the northwestern corner (for example) of all the parcels
in the holdings comstitutes the unique identification. Thus all holdings are
defined to belong to one and only one segment, whether in or out of the sample.
The order of the rule for associations is aimed to facilitate identification and
location in unique z:tegment.s for the large majority of holdings. '

11.6 REPEATED SELECTIONS FROM LISTINGS AND FRAMES

Chapter 18 discusses methods and designs for periodic surveys for some
defined set of ohjectives. This section concentrates on problems and
opportunities when a set of listings or a sampling frame is used for several
surveys. Savings of costs and the increased opportunities are so great, both on
the modest level of listings and on the greater scope of master frames and
operations, that they more than overcome the problems and difficulties that

must be sslved from their repeated and joint uscs.

At the simplest level consider a set of listings or segments for dwellings
or holdings prepared for a sample of blocks; the sample of blocks may be only
for & distriet or a city, or they may belong to a national sample. In the
simplest case the listings or segments are prepared for k samples selected with
the same sampling rate [ for k peﬁodic surveys spread over 1or 2 or a few
years. The sample can be first designed for & rate of kf and then divided into k
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parts of f, each of which benefits from the gréater care and better spread of the
larger sample, yet carries only 1/k of the costs of preparation. The attained
sample sizes of each of the k samples should represent the changes and growth
of the k periods. Area segments reflect those changes and they can last for a
few years, during which boundary changes will be.few. On the other hand,
listings of dwellings or farms should be prepared only for a year or two, and
also supplemented for the new or roissed. A well described example is
available from Currvent Population Surveys of the USA, with listings prepared
for 8 rotations [USCB 1978),

A set of listings or segments may also be used for different selection
rates that sre not foreseen at the time of their preparation, but this situation
requires more care. If an EPSEM selection f; is removed from a set of EPSEM
listings f}, the residual is also EPSEM, f, = § — f,, from which futwre samples
can be removed. It may be even easier to select from the entire original listing
of fy; if a new selection hits a selected line, merely substitute the next one, and
so on, bacause selected lines and successor lines are both EPSEM. It is
important that the removed sample be EPSEM, because if an unequal sample
were removed, it would leave remainders biased in the reverse direction [Kish
1965, 9.4D]. ‘

Unequal selection probabilities for clusters introduce problems for
repested selection. For example, if blocks are chosen with PPS, blocks with
smaller Mos, get exbausted first, leaving unselected, unused listings in the
larger Mos,. Before discarding these unused listings in favor of an entire new
selection, there are several alternative remedies. First, one may resample and
reinterview some households in the smaller blocks, especially after a few years.
Second, we may use an unbiased procedure for forming larger “sufficient size”
combined blocks (11.8). Third, this procedure may be even better when used
with foresight to form combined blocks for listing, say, kb* instead of only b*
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as the needed subsample size. Another problem with PPS and other unegual
probabilities concerns the selection from strata of two or more units with PPS
and without replacement; this was touched upon and referenced before (7.4).

Sufficient size PSU’s may appear as another form of the same basic
problem of “sufficient size™ in a small city (district, county) a survey
organization in a few years (5 or 10) may have visited most of the dwellings.
The possible solutions resemble those above, but on & different scale perhaps.
For ezample, revisiting dwellings after 10 years may not be troublesome,
especially since a good proportion would have different occupants.
Nevertheless, the formation of combined units can yield a different solution.

11.7 CONTINUING AND INTEGRATED SURVEY ORGANIZATIONS

The combined listing for several samples described above may be called a
master sample, but that term is also used more broadly. As we move o
broader levels perhaps master frame may ‘be more appropriate, although the
two terms have not been defined and distinguished. Even broader and higher
levels may refer to instegrated swrvey operations [UNSO 1980]. Some of the
issues and advan@ages have been briefly noted earlier (9.2) and discussed under
“continuing operations” [Kish 1965, 10.4, 12.6]. Descriptions of such
integrated operations are illuminating [USCB 1978; Hess 1985; Murthy 1967,
Ch 15, 18}

Waster frames may serve integration and cooperation between separate
survey organization. However, here we need to outline the several ways in
which one integrated survey organization may undertake to serve the diverse

needs for sample surveys of a nation, state or other community.

a) Field staff of enumerators: either a gingle permanent, staff may be
used, or different teams may be hired for different subjects; e.g. agronomists
for agriculture, women for fertility surveys, ete.
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b} The loeation of enumerators may be “permanent” in the sampling
areas, or travelling teams may be sent from the central office(s} to the selected
points. '

¢} One set of PSIVs may be used for all surveys, or different sets may be
selected to fit better the diverging needs of different subjects. Samples of
agriculture, industry and labor force may need different PSU’s as we note
below. This confiet also links with the possible need for different types for
teams of enumerators.

d) Seope and nature of populations and subjects covered by the survey
organization are closely connected to the above. These in turn must influence
the measurement methods used for data collection.

e) Sampling methods are related to the above and to the fromes and
other resources available to the survey organization.

f} Methods of analvsis can differ widely: even more than statistical
estimation, the depth and variety of substantive analysis must depend greatly
on the experts (economists, demographers, agronomists, etc.) within and

around the survey organization.

Retaining PSU’s ;:or changed needs. The best measures of size and the
best variables for stratification may be rather dissimilar for different subjects,
such as agriculture and labor force or total population. If separate designs are
used to “optimize” for each, the separéﬁe sets of PSU's would need separate
sets of enumerators and preparatory work. These problems are closely related
to methods for retaining units after changed strata and probabilities.

The needs for changed designs based on new data from decennial
censuses resembles the needs for different designs for different subjects. “After
the initial selection the units may be used for many surveys over several years.
But a8 time passes, the needs of new surveys may be better served by new
strata and new probabilities, based on new data, than those used for the initial
selection, The difference between initial and new data may be due to changes
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in survey objectives and populations; for example, a sample initially designed
for households and persons may be later required to serve a survey of farmers,
or college students. Obviously, our methods are also applicable to designing
, simultaneously o related group of samples with differing objectives” [Kish and
Seott 1971; Kish 1965, 12.7). Those methods allow for using the “best”
measures, for size and for strata, separately for each sample purpose, and also
for maximising the retention of the overlap between sampling units (PSU’s)
between the samples for separate purposes. As an altérnative it would be
poasible to design a compromise that would average the measures in order to
achieve a complete overlap of all units, but sacrificing some efficiency for both
purposes (9.3). A compromise between those two may be even better than
either: increase the overlap with some small sacrifices of separate efficiencies
by recognizing only differences of measures thas surpass some arbitrary
minimal criteria.
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CHAPTER 12. ESTIMATION, WEIGHTING, ANALYSIS
12.1 STATISTICAL ESTIMATION AND ANALYSIS

That sample design combines selection and estimation is often stated in
the sampling literature and those statements have some validity. For example,
neither a selection of n cases nor the estimator ¥ = Ny/n is either biased or
unbiased by itself, but only in combination: ¥ = Iy/p; is unbiased if the
elements j are selected with probabilites p;, and ¥ = Ny for EPSEM

selections only. Much of sampling theory concerns these simple expansion

estimators, but in practical survey work they are seldom used; most survey
analyses use more complex estimators. It would be difficult to draw a sharp
boundary between estimation and statistical analysis; but it is also diffieult and
unwise to separate statistical analysis from substantive analysis. Statistical
and substantive analyses are jointly needed, even for differences of subclass
means (¥, ~ ¥,), but even more for more complex analysis, such as

multivariate regression analyses; also for presenting sampling errors,

However, the chain linking selection to estimation, then to statistical
analysis and to substantive analysis would be too long. In most practical work
the sampling statistician who selects the sample is not in control of the analysis
(agricultural, economic, social, epidemiological, ek) of the survey statistics.
Thus the separation of the functions and operations, both in time and in
personnel, of the selection of the sample from the analysis is often desirable or
even necessary. But that very separation should alert us to the need for

relating the selection design to the aims of the survey analyses (Ch. 9).

A good deal of estimation depends on appropriate weighting for validity
and for efficiency. Weighting is used not only to balance for unequal selection
probabilities, but also to compensate for nonresponse, for noncoverage; also for
improved ratio estimation. Weighting thus is closely connected to estimation

and to analysis, hence the triple name for the joint aims of this chapter.



170
Statistical analysis fills most volumes on statisties and mathematical
gtatistics and that vast subject cannot be condensed into books on sampling.
{On the other hand, those volumes largely avoid the problems and methods of
sample selection.) It would be even less feasible to touch on all the many
aspects of substantive analysis used on survey data.

12.2 SIMPLE AND COMPLEX MEANS AND RATIOS

We may regard the sample sum y = Ty, or s weighted form
y = Ewyy;, as the basic computing unit for most survey statistics. Other forms
used for survey analysis are also sums of moments, especially the components
of the covariance matrix: Z‘wjyjz, Ew;yx;. The simplest functions involve only
constant factors: ¥ = Fy = yif, simple expansion totals; or ¢ = Ny, whiqh
may be ratio estimates (12.3.4); or ¥ = y/n simple means; here F,N and n are
all fixed constants. But those simpie’ forms seldom suffice for analvses and we

shall begin with the ratio means of elements:
? = yln = Z‘YJ/ECJ, or
¥ = Dwyyy/Bwie; = Dwyyy/Dw;, (12.2.1)

where ¢ =1, the simple count variable for elements and the w; are the
weights for the elements, which can be regarded as 1 {or Un) for “self-
weighting” estimates. The denominators are random variables, because either

the sample size n, or the weights, or both, are random variables.

Two modifications are now introduced that readily incresse the
generality already implicit in ratic means. First, let x denote the base of the
ratio means, r = y/x, to signify that it stands for a generalized random
variable; for example, the ratio of two survey variables, such as yield/acre, or
-weight/height, proteins/calories. Most often x represents a simple count n or a

weighted count mj of elements, but it is & random variable, not a fixed sample



171
size, because of nonresponses, unequal clusters, and variable subclass sizes.
Second, let y; = wjy; and x = wjx; represent already weighted variables,
where needed, to simplify the formulas. Then the ratic mean is: ‘
Y %y Doy BBYni ShOme * yw
x Ex Dyxy  DyOmy Da(Xpe *oXpy) (12.2.2)

The r denotes the ratio v/x of two sample sums of element aggregates

" (weighted if necesaary), where y and x also denote the sum of stratum totals yy
and xy, each the sum of elements within the h—~th stratum. These in turn
represent the sums of totals for the ith primary selections, yy; and xy; (or
“ultimate clusters”) from the h~th stratum. Often there are only fwo paired
selections (i = a,b) taken from esch stratum b. These forms are needed for
computing variances for ratio means based on stratified sums of clusters of

variable sizes, ny; = x,; (13.1).

Other functions of random variables may also be used; for example
products yx, linear forms LWy, etc. A great variety of commonly used
functions are based on ratio means, and the difference of pairs of ratic means
is probably the most comamon:

=

Ty~ Tp = ¥y/%; =~ ¥olky . (12.2.3)

Such differences may denote several kinds of comparisons, with different

effects on variances. a) For comparisons of design classes (e.g., differences of

crop yields between two provinces) the two samples are independent and

var(r, = r,) = var(r;) + var(ry). b) For comparisons of crossclasses (e.g., crop

vields for two age groups of holders) the two samples come from the same k
sampling units and var(r; — ry) =

var(ry) + var(ry) = 2 coviry,s,). ¢ For comparisons of two time periods of
similar sample bases, there also are covariances when the same sampling units
are used for both occasions; perhaps high correlations if the same elements
{e.g., households) are used, but lower if only the same P8U’s are used.
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Differences are simple forms of the linear combinations of ratio means,
and Dkr, can represent the more general form. For example, LW, could
denote a weighted mean of crop yields over several periods (1) of similar
surveys. In addition to the sum of variances, there will also be covariances

when using the same ssmpling units.

Ratios of ratio means {or double rativs) are used sometimes with r,/ry, =
(y1/2 ) (yyixs); for example, the ratio of mean crop yields for two styles of
farming may be used, instead of the difference (ry—ry) of the two means. Then
those ratios of yields may alse be compared for two periods (ry/rg)—{ryfrg)y
for two perieds (t,u). Furthermore, an index may represent the weighted sum
of several double ratios: W r,/ry;, with i denoting different items in the index.
Medians and guantiles are also used and their variances need special methods
{Kish 1965, 12.9-12.11].

12.3 RATIO AND REGRESSION ESTIMATORS FOR MEANS AND
TOTALS. POSTSTRATIFICATION.

In many situations we can find auxiliary or ancillary data for improving
the estimates, and those data and estivnates may have different forms. In
basic, common form the sample statistic ¥ may be improved with some
available ancillary population value X, together with the ancillary statistic %,
which is taken from the same source 38 & but confined to the same sample as
§. For example, ¥ = ¥X/% may estimate aggregate production of a crop based
on a mean sample vield ¥, multiplied by the total yield X from a census and the
mean yield ¥ from the same census, but only for the same sample base as 7.
Any “bias” from the earlier census affects both X and ¥ similarly, thus cancels
out. The ratio X/%X may be viewed as improving the estimator 7, especially
because the simple expansion total y/f can have much higher variance (12.3.4).
Or the ratic /% may be viewed as. “calibrating” the earlier census total X,
which may be obsolete or of low quality, or both, because: ‘
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¥ = X = XY = ¢k = By .

The sample pairs, ¥ and ¥ or y and x, have the same standardizing factors
whether I/n, or Lfor 1.

In addition to reducing variances, ratio estimators also serve exiensively
as adjustments for reducing the biases of noncoverage and nonresponse. There
they merge with methods known as post--st;ratiﬁcat&on, noted later. This great
Bexibility of ratio means accounts for its wide use in practice, and should be
remembered during comparisons with two other estimators that follow, We
can construct for any constant k

the difference mean (Fg9 = § + k(X — 3. (12.3.1)

For example, ¥ and ¥ may be population and sample means from a previous
census, and ¥ the mean from a sample survey, with ¥ based on the same

sample as §¥. The adjustment factor may be simply k = 1. When for the

adjustment factor k the linear regression coefficient B is used, k = B and

the regression mean (Fyop) = ¥+ B — %, 4 {12.3.2)
When for the adjustment factor the ratio of means is used, k = ¥/% and

the ratio meen (7,) = § + (F/AE — ) = FHL. (12.3.3)

Comparisons of the variances produced by these three means are available
{Cochran 1977, Ch. 7; Hansen, Hurwitz and Madow 1953, 11.2; Murthy 1967,
Ch. 11; Kish 1965, 12.3B, 11.8]. Ratioc means may be viewed as forcing the
linear regression line to go through the origin, so that y = 0 when x = (;
whereas the computed regressions ¥ = a + bx usually have y = a, positive
more often than zero, for x = 0. The regression estimators are shown to have
somewhat lower variances, but with assumptions of SRS and linearity. But the
coefficients bp may also be computed from multiple regreésiohs y = lepxp from

large complex samples, benefiting from several ancillary variables.
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The above three estimators for means may also be used for estimating
aggregates and the formulas are similar, but with estimates of totals in the
place of means. The differences of efficiency among the three are complex and
subtle, and ratic means are more often used, I believe, because of their
simplicity, but often they all can be vastly superior to the simple unbiased
expansion estimator y/f. Comparisons of the efficiencies of (Xy/x) and (y/f)
may be stated most simply in terms of the relvariances C‘;z, and Ci of the
sample totals vy and =

Var(Xy/x) CZ+ CZ - 2R, C,C, c? Cy
= = 1 4 {om = 2R, -},
Var(Fy) cz cz o C, (12.3.4

Large gains occur when the bracketed quantity is large and negative, especially
when 0.5<Cx/Cy< 1.3 and Ry, > 0.7 [Hansen, Hurwitz and Madow 1953, 4.19;
Kish 1985, 6.5). This occurs often in practice when the sample size x is highly
variable and also a principal determinant of the total for y found by the
sample. For example, two stage selection with constant factors = f, x
produces variable sample sizes n from unequal clusters: and ratio estimators

Ny/n may be much more precise than y/f.

We next need to examine situations when the ancillary information X is
subject to error; either 1o sampling error, as in two-phase sampling (12.4), or
to possible biases, as in adjustments by weighting (12.5). Ratio adjustments
are similar in form to ratio means, but they differ in fundamentals. In
poststratification all three elements y,,n, and Ny come from the same

population and the estimators of
totals ¥, = EN,§,, or means ¥, = LWL, (12.3.3)

serve to adjust these 7, = yy/n, for failure 1o select the sample cases ny in
proportion to the Ny: identification of the N, population elements may have
been unavailable, inconvenient, or ignored at the time of selection.
Poststratification by Ny, or W, = N,/N of the sample means ¥, = y,/ny, in the

strata will yield almost as low a variance for an SRS of size n = Zng, as if it
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were proportionately stratified. Furthermore these methods may be applied
more broadly to other sampling methods, to other kinds of subclasses, and to
other types of variables Dy /)X, = Zr .. These resemble the adjustments
by reweighting we discuss later (12.8).

The estimator r = y/x = I¥,/E¥, and its expansions, Xr and ¥r, are
called combined rativ estimators, because they are ratios of sums of the ¥, and
¥, Each swmn receives some stability from averaging over random variables.
It is a basic, simple and relatively stable statistic that is used most frequently
in survey practice. The separdte rufio estimator, on the other hand, is seldom
used in practice, but it appears in the literature because it can have much

lower variance than r = y/x:
l'”p = 5 Whrh = 5 Whyh/xh N (12.3.6)

This represents an cverage of rofios computed separately in strata and then
combined into a weighted mean. It has several disadvantages: 1) Computing
the ratios r, for each stratum can be complicated for many statistics. 2)
Reliéble, unbiased weights WhAare seldomn available for many strata for most
statisties. 3) The separate ratios ry, can often be unstable (because of errors in
the bases x;,) and the ratio bias of each stratum can add up to a considerable

bias for the sum,

The bias of the ratio estimator is a vast subject in the literature of
sampling, but it is seldom of great concern for the combined ratio estimators in
practice. This technical bias occurs because the denominators x of r = y/x are
random variables. It is readily shown that the expected Bias of (v) = E(r ~ R)

can be stated in relative terms as:
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Bias ratio of r = Bias(r)/Ste(r) = ~ Ry, C,. (12.3.7)

The bias of v as a ratio of its standard ervor equals — Ry, C,. Correlations
hetween the ratio r and the denominator x probably exist often, but are
probably small; [R,| is probably much closer to 0 than to 1. Therefore,
[Bias(r)/Ste(r)|s C,, the coefficient of variation of x. It is not often feasible to
measure R, but estimates of the approximation

bias(t)r = [var(x)/x® — cov(y,x)/yx] (12.3.8)
have shown that the bias ratio is seldom important.

The coefficient of varintion of x, ev(x) = ste(x)/x, serves a critical control '
on the validity of combined ratic mesns r = y/x. It is a useful and safe check
on the bias of r; and also on their standard errors, ste(r), (13.1). Therefore,
routine computation is recommended to check that cv(s) <0.2. This statistical
advice fits well with common sense: the ratio y/x should not be used if x is
unstable and highly variable, and this may also be viewed as a statistical
refinement on mathematical taboos against dividing by zero [Cochran 1977,
6.8-6.12; Kish 1965, 6.6B].

12.4 TWO-PHASE SAMPLING, SCREENING CALIBRATION,

“It is sometimes convenient and economical to collect certain items of
information on the whole of the units of a sample, and other items yof‘
information on only some of these units, these latter units being so chosen as to
constitute a sub~sample of the units of the original sample. This may be
termed two-—phase sampling. Information collected at the second or sub~
sampling phase may be collected at a later time, and in this event, information
obtained on all the units of the first—phase sample may be utilized, if this
appears advantageous, in the selection of the sepond—phase sample. Further
phases may be added as required.
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“Is may be noted that in multi—phase sampling, the different phases of
ohservation relate to sample units of the same type, while in multi--stage
sampling, the sample units are of different types at different stages.

“An important application of multi--phase sampling is the use of the
information cbtained at the Arst—phase as supplementary information to
provide more accurate estimates (by the method of regression or ratios), of the
means, totals, ete., of variates obtained only in the second phase.” [UN, 1950.]

This UN definition of two--phase sampling is generally accepted in
survey sampling, where it is also called double sampling, though elsewhere
those words may refer to sequential sampling. The methed may also be
extended to more phases in multiphase sampling, but discussions of two phases
will suffice. The central concept involves selecting the second phase and basic

" sample of n elements not directly from the population of N elements, but from
a larger first phase sample of n; elements. Ancillary information, not available
{and too costly to obtain) from the population of N elements, is obtained for the
large sample of ny elements, in order to improve the statistics Qbased on the
final sample of n elements.

In the two phases we have the total cost = cn (1 + xx'LcL/cn) where cley,
the ratio of basic to ancillary informarion per element cost is a constraining
factor on the utility of two phase selection, because large ratios (say cfey, over
10 or 100) are needed to justify the use of the first phas‘e. For ‘example,
where the correlation is 0.8, two-phase regression estimators can reduce the
variance by 0.8 only when /ey >7; and reduce it by 0.5 only when c/ey >55.
In these comparisons the total cost is fixed, so that a two phase sample costing
{en + cyny) is compared with the cost of a one phase sample of cny, and ny/n
= 1 + {oy/milegfc). This reduction of the sample size prevents frequent use of
two phase sampling [Kish 1965, 12.1-12.2; Cochran 1977, Ch. 12]. On the
other hand, when ¢; is very cheap, and c/ey, very large, the entire population of
N may be used instead of the first phase ny,
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The basic theory of two phase sampling has been developed chiefly for
SRS, and chiefly for application to proportionate sampling in the second phase,
and to regression estimators. However, two phases of selection may be and
has been applied more broadly, also to larger sampling units, and introduced
into designs complicated with stratification and clustering. Some of these
- applications are listed below.

1} Proportionate stratified selection of the n elements based on information for
the ny elements. It is not likely that the gains of PRES would justify the cost
of two-phase sampling,

2) Dispmpérﬁonam optimaol ollocation in the second phase may be based on
information from the large sample ny in the first phase. This may be called a
screening operation in some situations; for example, three different sampling
fractions had been applied in the second phase to dwellings in three strata of
dwellings, distinguished by socio-economic ratings, which were assigned in a
first—wave screening operation [Kish 1965, 11.4).

8) Calibration, post—survey checks, quality checks .are names given to
remeasurements with better and more costly techniques for a subsample n
selected from a larger sample ng observed with less costly techniques. The
chief aim here is better measurements, wheréas the emphasis in two-phase
sample is on improved selection procedures, but the two aims can be combined.
Furthermore, here we usually consider the smaller subsample n as auxiliary to
the larger basic sample ny; whereas in two phase sampling the 1y, is considered
auxiliary to the first sample n. Crop-cutting measurements can be related to
both and crop yield surveys can be related to areas under cultivation [Yates
1981, 7.14].

4) Regression and ratio estimators can be apﬁlied to two-—phase sampling and
to calibration measurements. Two phase regression estimators can be efficient
only when the correlation of the two measurements and the cost ratio c/c; are
both very high, as noted earlier; this may occur with remeasurements of the

same variable,



179
For these two phase estimators the variance component of the first phase
must be added to the variance of the regression or ratio estimators (13.4) [Kish
1965, 11.88, 12.2].

12.5 WEIGHTED ESTIMATES.

For self--weighting designs with EPSEM selections with the overall
probability £ for all elements, the weight can be Uf = F for all sample elements
to estimate totals ¥ = T yy/f = Fy and 1/n to estimate means § = Zyn. That
simple uniform weight serves as a great convenience for self—weighting
samples, though other weights may be introduced for nonresponses, or for
adjustments if so desired. The estimators still remain simple if f/'w is used
instead of f, which is, thus decreased in the ratio w = 1/(coverage x responses).
with w1 to reflect less than perfect responses and coverage rates (15.3): ihis
would be needed for expansions like v = wy/f, but not for the means §.
However, estimation becomes more complex when different weights are
assigned to separate subclasses. Several reasons and sources for weights shonld

be distinguished because they have distinct effects on weighting.

a) Disproportionate sampling fractions can be introduced deliberately, either to
detrease variances or costs with “optimal” allocation among strata, or in order
to produce larger samples for separate domains. These differences in the
sampling rates (f,) should be large (factors of 2 or § or even 100) and must be
compensated by inverse weights in the sample estimates to avoid bad biases in
the statistics (5.8).

b) Inegualities in the selection frames and procedures may create unequal

'

ion probabilitie if not adjusted during selection. These may be serious if
they affect more than a small portion of the sample; they can be corrected with
weights inversely proportional to those selection probabilities, if these have
been cai'efully obtained and maintained (4.2, 4.4).
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&) Differences in nowresponse snd noncoversge rates between parts of the
Wmmwmwmmwmm
regponse weights. Sech veristions between subclasses bave different effects
then 2 wifess sonrespomse correction noted abowe; alse they can hawe
and oo analytics] stetisties (15.3). With small mosresponses, the differential
corvections between the parts should slso be small, snd often not needed for
small saseples. They requive knowledge sbout the sizes of nonrespoose within
delinod parts; alve sssocsptons based on pest dete anl woedels sre nesded for
thowe mperfoct methods to compensate fr badeguaries of Beld operstions.
Techniques for compeosating for 1) itom mowregponse may differ From
techoigees Sor 2} fotal sowresponse; also fr 3) mewsoveroge and i 4) deliborne
edusions (15.3). -

&) Sestisticel ediustwents of sample dets coe be made in order o deevesse
variances, o o veduce bisses, er G stenderdizstion to 8 some model
Unegual weighting for difforect perts of the sampbe way be dons with various
techuigues; and they all fevolve vsing suxiliory soorces of dats from ewtside
the ssmple daell. 1) Poststratifieation csrrects the sives of strats with ouwtside
data tv compensate for randosm varistion, as fr noccespoese, aad especially for
nomcoverage. SRS selectioes' of sive » poststratified with the estimatmrs
?ﬂmﬁ‘wﬂmwmhmprmﬁmﬂywmaamm&n
= BN /Nin would be, ss shown in sompling tests. In pracdce, bowever,
adjvstments for bisses of nonresponse and especially nosevverage are the chiel
[USCB, 1978, Ch. V1. 2) Ratic estimaiors £ Eyfx sre more geners) forms for
diverse varisbles X; the forvmls resesobles pustsoratification, but differences
have been noted before (12.3). 3) Stndordisntion i often wsed by econounists,
demograpbers and others to sdfust wenns snd rates found in sumples to some
“standard popudetion™ thet differs from the frame population. I is alse nsed to
remove “distuebing™ base varishies from subelase comparisons [Kiab 1987, 4.5,
1.4 @ In muliple cdussificativn problems the cells of twe or mave Jnensions
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of classificstion can be sdiosted (with least—aguares?) to agree with
unidiznensional marginel totals (Bl Badry sod Stepban 19551 These four
exmoples Mustrate possible adjostvents of date; but these are oot stoctly
sampling problesns, becsuse complete consuses can be similarly sdjvsted. 5)
Adiustments for biased selection metheds (guota semples, judgment ssmples)
formally may resemble lwzmmu»mmmnf’m
procedures is that within adjustment dasses the selections canuot be assuwmed
t» be “random” e unbissed. Thase asmmoptions are often vestated, vmjvstified
and misleading: “exchangeability”™ within classes is lacking (1.4, 1.8).

Procedures for weighting differ, becanse each has disadvantages, and
their effects can differ between specific situations. 1) Sepurnte weights w;, for
each element, oo the data tape and applied in oll statisties, is the mest practical
and practiced procedure, mcveasingly feasible with wodern computers. 2)
Weighted statistics T W, §, with uniform self—weighting within classes may be
preferred for o small number of strata and for snly a few, simple statisties; for
example, for two strata with selection rates f, = 1 for one and §; for ibe other.
3 Random duplication of sample elements may be nsed % prepare self—
weighting tupes, which may be convenient for some situstions and some
statistics. With those replications the weights within classes are approximeted,
4 Elimisation of cases may be used instead of duplication, or combinations of
duplication with elimination. The effects of these procedures are enplorsd
belpw {12.8). ’ )

Wmmwjmwwmmmbmm
oance. First compute Fg the inverse of the selection probsbilicy through all
sxag%;e.g.,1@,=§=fhxfmxfm&rﬁlr&smdsmnpﬁngmimin
the h—th stratum. Next, adiustments for ponvespouse and noncoverage rates
mybeinwodmd,maﬂywhbinmamﬂewbdmcwc;zﬂéimmc
x coverage)”'; for example .95 respomse and 0.92 coverage yields
wy, = 1144 F. Next, further adjustments may also be introduced to produce
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o w;j x adjustments, either in the same or different subclasses [UNCB
1978, Ch. V1. Finally these weights may be standardized to any convenient
proportion, so that Wj = wil L jw; .

W

12.6 EFFECTS OF WEIGHTING.

Weighting can have one or more of the following effects on statistics: 1)
reduction of biases; 2) poasible introduction of other biases; 3) reductions of the
variance; 4) increases of the variance, 5) complications of computations and of
statistical analyses.

Reducing potential biases, such as from nonresponse, and especially from
noncoverage, are good reasons for weighting, but this can also introduce biases:
e.g., when survey data are adjusted with census counts, there are also
possibilities for introducing other biases (15.3). Reduciné variances with
poststratification and with ratio estimators are also discussed elsewhere (12.3).

Weighting introduces complications in computavions and statistical
analyses, despite beliefs that computers can now easily deal with ‘them. “a)
Machines seldom if ever make mistakes, but manw-machineysysuems often do.
In one situation many person—months were lost due to computing with
inverted weights. A more painful example concerned false results that were
analyzed, published and "explained” ~ and then retracted. b) Data tapes may
be reanalvzed later by researchers without sure access either to good
computers or to the reasons for the weights. The risks of mistakes increase
with the separation in time and personnel from the collection and coding of
data. ¢) Problems of weighting arise for complex statistics, such as
multivariate analysis. Weighting appears “simple® only to minds fixed on
simple aggregates ¥ oor simple ratios ¢/%. There exist both theoretical
{inferential) and procedural problems for statistics like regression coefficients,
or like "design effects,” for which the value of n in o®/n creates problems, )
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Weighting involves the costs of accurate records to obtain, maintain, and
properly use accurate weights, Cheap records may result in biases from
improper weights” [Kish 1877].

Now we concentrate on increases in variances due to various techniques
for weighting. The increases are viewed as due to weights given to randomly
chosen elements, and as departures from equal, proportionate weights. This
simple model is convenient and reasonably justified by experience. The
contrasting problems(af optimal allocations and conflicts with them are treated
elsewhere (5.8, 9.5). The increases in variances due to “random” weights
discussed below tend to be similar for means and totals for the entire sample,
also for subclasses, for their comparisons, and for most statistics. Thus, for
example, increases by 1.25 of the variance have effects similar to reducing n to
n/1.25 = 0.8n, or by 20 percent of the sample.

Increases due to rondom weights may be stated most conveniently in
terms of the frequency distribution of relative weights. If proportions W, (when
LW, = 1) of the population are given the relative weights ky, variances are

increased by the fuctor
1+ L= (8 Wk HE W /ky) (12.6.1)

L, denotes the “relative loss” over the minimal 7, which obtains for uniform k;, .
Note that the relative values of ky, cancel in the product. Furthermore, the
inverse of the weights, proportional to selection probabilities, yields the same
factor, Sometimes it is more convenient to deal with relative sample sizes,
where the proportion ny, of the sample has weight k;, and nyky/n = Wy, The
relative increases in variances are

nk nhkg nk ka

1+L= = ,
(Enpky)?  (Thy® (12.6.2)

1

where the last expression sums elements individually rather than in classes.

We may also view the increase L due to weighting as the relvariance s%/fc'a of

sample weights kj, because L k; = nk and
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nEk? %Skf«-f&) s
§= )0-13%:”‘

Tk § B B {(12.6.3)

Thus only small relative losses L are incurred for 1) small relative differences
inweightskj;orZ)smaﬂpmmrtkamnhinafthemmpkwithmydﬁfuem
weights, or 3) for samples mostly in the center of the range for the relative
weights k;. Table 12*8.1inusmthmesmmmmanimhem

Replimﬁanofmmmaybemedmreplmmtweightsvjinwdaw
produce self—weighting sample data. The relative weights &y, = (1 + Wy),
where 1 = by < 2and 8 s Wy, x 1, for a set of ny, cases may be replaced by
giving weights of 2 to a random selection of Wyn, cases and weights of 1 to the
residual (1—Wy)ny,, so that the total weight will be n[1(1—-Wy) + 2W,] =
ny(1 + W) . If relative weights of ky = (k + Wy) are seeded {where k is an
integer), then (1—W;) should get weights of k and Wy get k + L

Duplications can be used to replace weighting for nonresponses because
of the convenience of self—weighting “decks” of cases. and they are especially
useful for imputation for ftem nonresponses. First, it would be diffieuit to assign
different weights to the several items {variables) of the same case, depending
on nonresponse rates for the items. Second, availoble valid responses on many
iterns permit close matching of pairs of caces, so that instead of sews of cases
{my, > 1), single dividuals {(m, = 1) on case~by-case bases can be used for
imputations for the missed tems.

Duplications of the fraction W of cases in set increases varisnces by the
factor 1 + L=[1 + W(1 — W)l + W)L The maximal factor is 1 + L
=1.125 and it comes for W = U3, These mcreasss due to duplication are
additional to increases due w weighting, which are noted showe.

Three extensicns of duplicasion should alse be noted.
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1) Imputation with cose-by-—case matching may allow for less bias in
duplicating for noaresponse. It may be particularly useful when good data are
available for better matching, as there are for item nonresponses. This

technique is frequently used in “hot—deck procedures.”

2) Instead of duplicates for the portion W, it is possible to use multiple
replication by selecting the random portion W for (k + 1) replications, whereas
the residual portion (1 — W) receives only k replications. “Thus the unit
variance increoses by W(1 — W)/(k + W2, when the portion W receives (k +
1) replications and the portion (1 — W) receives k replications” [Kish 1965,
11.7B). The masimal increase with k = 3 is reduced to 1/48, whereas with k
= 1 for duplications it is 1/8. Thus with multiple replications it is possible w
almost eliminate the increases in variances, additional to those for weighting.

3) Elimination of eases can also be used to produce self—weighting decks. For

example, suppose that in a national EPSEM selection with f, a small domain
(province, city, ew.) receives a much larger rate kft it may be better to
designate a subsample with kf/k = f, for this domain of the national sample,
setting aside the residual (k — 1)f,

4) Combination of duplication and elimingtion may also be used for differences
of subclasses, Elimination may be viewed as the case k = 0 in the formulas
above, where the increase W{(l — W)/(0 + W)% = (1 — W)W may be viewed
as ef{1 — e), where ¢ = (1 — W) is the portion to be eliminated. When e is
small this is not much greater than the increase W(1 — W)/{1 + W)z when W
is small. Thus eliminating a small portion e is (surprisingly?) not much less
efficient than duplicating it. This knowledge may be used for producing self—

weighting decks for small differences in response rates for subclasses.
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CHAPTER 13. COMPUTING VARIANCES FOR COMPLEX SAMPLES

13.1 VARIANCES FOR RATIO MEANS

Combined ratio means may be expressed in several useful and

instructive forms:

y Ty Dwy Dyy I, Mnatyw)

X ExJ ijx; L‘xh. Dhxy,  Blmy, txg)

(13.1.1)

The mean r represents the ratio of two random variables y and x, each the
sum of the n element values ¥ and x;. These may be weighted values ¥; =
wjyg and x;= ' Jx; In surveys the x; usually represent count variables, so that
x=n or x=Iw;. These may represent either the entire sample or only
subclasses. Furthermore y often represents a dichotorny, a subset of the count
n, and then r=p, a proportion (12.8). The first four expressions are used for
computing r and the last three for computing variances. The stratum totals yy,

and xp, represent H independent sets of sélections (h=1,2,..H), Within each
stratum the ¥y, and x,, denote independent primary selections (o= 1,2...a,).
The numbers of primary selections a,, may vary between sirata: a, may be 2
in one stratum, but 3 or 4 or more in another. For computing variances within
the strata a, =2 are needed. The last term shows each stratum with exactly
two primary selections, a and b. Such designs of paired selections from strata
are often preferred, because they permit a) most stratification for fized
nurber of primary selections a=2H, and b) simple variance computations, as

we shall see.

Variances for the ratio of two random variables r=y/x can be compured

from
var(r)

™ Hvar(y) +rivar(x) ~ 2reoviy,x)]
x” ¥ 2dyf +r?dx? - 2r Sdy, dx, ]

i

= x"2ndad . , (18.1.2)
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The Grat Boe evpresses the varisnce of the function r=yit a5 2 Gwetion of
vaninuees for shmpler torms, v and x. This “propagution of variamees” refiers to
an suympdetic metbed of spprevieste warisoces fwr fencticss of rnodom
varislles io lorge somples: & is alee called 2 *Tayler sevies approvionetion,” or
e “dultn methed,” sad i bes boen applied to other complex, wultivariste
ndernte siod somplen. The couventent, useful, perbaps pecessary vantrol is
to chock thet the coeloiont of veriketion of the deneminster x, for oz} =
sheixlsx <O This cantive is veeded to gusrd againet 2 large bins ratis G the
extimaler r; & is not e restrictive, bul peglecting it can be dangevouns. For
exmngle, suppese the varialiity of individual cluster stees x,, I8 C, = 8% =
1; amd CVix) = Stefx)x for 25 paired closters will be CV(z) = C/,/38 = U5
= @R, jost on the budefine. But f T, can be redued 0 C,=0.1, with
approgriste  centrols within strate and with PPS selections; then the
CY)=0.1/5=002 This can become a problem especially for. suhclasses
[Beldwtme sl Scldbatme 1978 Kb 1965, 14.21

When the densonineior x i 8 fixed constant n the lost two terms vanish
and varlyis) = var(ydn®. When the two varisbles x and y are independent the
epvarisoce dssppesrs; these oyvarinmses arize iy sorveys because the v amd x
ave bused en te swome sepplivg wits. The relative sise of this covariznes
term, coviyx) = pyy/ivar(ylvar(s], depends on the corvelation py, between
the twe werishles; whes these velations are high the covariances may
drastically redae the warfr). For example, the zy,  often messwe highly
vuriehle sives of swwple closters, sed if the ratios v, fe, & cesters e rather
evenly distributed then the corvelations may be high. On the other hand, for
Tore s, for exaomple, the vy, may occur lurgely at randess, with only low
cmrrelations with the v,
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The second fne shows that the two varisoces zed the covarisnes
represent summaticns over the H streta of sgueres of the dy,, and du, terws,
which denote variations within strata of the yy, and x,  torms. These terms,
often called “wdiimete clusters,” ave sums for the primery selections of the pair
of variables: ¥, =5y, a0d x5, =Lx, . The identifications of strata and of
primary selections (he) are necessary for wariwnee compuistoes. Fer luk of
these identifications on data tapes, many probebility ssmples fall short of -
“mersvrability.” They ave slo swfficient, becanse with these primery valoes
ulthmate clusters™ the computations wmay ijgesre lower stuges (secondacy,
tertiary) of selectons. The computing woits are the devistions dyy, snd dwg,
defined as follows for both the general case with 2, selections snd slss far the
special cose with paired selections (2,2, a=abj. memm
Sunes ¥y, = iy, and x5, = D, end then:
dy} = (a,E yh, —yiMay — 1} or T~y
&f = B, —xpiay~ 1 or xy, —xpe)”
dyydxy, = oy Ty Xy, ~ VpXehiay — 1) o (Fas— Finthe X - (13.2.3)
Alernatively, you can first compute B, =y, T, Sl 2= Dag vl thes

4 = (I, — gMay, — U o iy, — 5y’

For paired selertions (o aod b the compuistions are conveshest,
pecessary (as some believe). They are often used i voriace computaiions,
and the date can cpme from varoes selection designs (6.41 8} Two sclections,
perhaps with replocevwnes, from esch stratuen; or b) siegle selections fovm
pairs of hall strate; ¢) collapsing of pairs of surata. with siegle selections Hrom
each; d) systesnatic samplng of prusary selections, with B2 sheclewed helf
SErata.
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For systematic selections it is also possible to use all the (H-1)
overlapping pairs {e.g. 1~2, 2-3, 3-4,...) instead of only the H/2 nonoverlapping
pairs (1-2, 3-4,...). In that case the summations of (13.1.2) are over (H-1)
terms; the paired computations can be used and dzf = (z; = 2,)% + (z, ~ zg)%,
+ (z3 = 2% + ...; and the factor a/2(a — 1) multiplies the summation:

var(r) = x"¥a/2(a — DIT daf . (13.1.4)

The terms 2y, = ¥y, —TEp, express the devigtions from the expected values rx,,
which the actual values vy, would have if the mean y content of the primary
selection were equal to the average r value; if the yy, /%, = Fj, were equal to
r, then the z,, would vanish. The magnitudes of z;,, measure the departures
from the expectations of uniformity of means of sample clusters within strata.
The 2z, terms make the computations easier to do by hand and to check
because X 2y, = Lz, = 0. However, on computers this convenience is not
important, and to have the three separate components of the variance may be
revealing and useful. Particularly var(x) is needed for computing ovi{x} =
var(x)/x?, which we need for the tests that cv(z)< 0.2,

The finite population correction (fpe) or {1 = f) can be multiplied to each
term, if it is appropriate and not negligible, for EPSEM with f the overall
probability of selecting all elements. Similar procedures hold for (1 — ) for
EPSEM within the strata, but fy different for the strata. If the f or fi, vary
within strata and are not negligible, there may be difficulties with the single

“ultimate cluster” computations,

Unstratified samples of a cluster are seldom actually selected, but they
may be used as approximations or models. The formulas above can be used, of
course, with a single stratum. However, a simpler formula may also be used,
Jbecause without strata the. sums y and x cancel out from {13.1.3) because
Ly ,~rix, =y —-rx=0= ¥+ p3x? - 2ryx, and we are left therefore with

only:
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var(r) = x"4(Ey? + r?Ex? ~2rfy x) = x 2%t (13.1.5)

Computing programs are increasingly better and more available, among
them CLUSTERS from the International Statistical Institute.

13.2 SIMPLE VARIANCE PROCEDURES

Paired selections are denoted in Table 13.2.1 for 10 strata (col 1) with
a=1 and 2(col 2). For the single ratic mean r only the 10 pairs of values for y
and = (cols 3 and 4) are needed. The auxiliary columns for Dy and Dx (cols 7
and 8), and for z and Dz (cols 11 and 13) dre helpful for three different
procedures for the same results. )

Another similar set of variables ¥’ and x' is also given (cols 5 and 6),
with similar auxiliary variables (cols 9, 10, 12, and 14). With the two sets of
variables we can compute all the three terms of var(r — r') = var({r) + var(r’)
~ 2 covir,r). These data represent a difference of two crossclass means from
the same survey, but they could equally represent differences of means from

twg periodic surveys from the same primary selections. These and other

differences are computed frequently in the analysis of suw data, where the

effects of covariances need o he computed.

Data for the ratio means are found readily at the bottoms of the columns
(3,4,5,8)

r=r=t-L=220 20 = 0.5843 — 0.4936 = 0.0907 = 9.07x1072,

The y variables denote proportions p—p' and these occur most frequently in
survey data. They can be also expressed as percentages: 58.43—49.36 = 9.07
percent difference. We can also write 1077 for percentages and for their
standard errors and 107 for the variances. This notation heips to reduce the
number of zeros we must write and the mistakes they tend to incur.
Furthermore, for this size sample ar;d this precision it may be enough and
more reasonable to write the difference as 5849 = 9 percent.
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To compote the varir) = 5.66 x 107% and ste (r? = 2.38 x 1072, from
eolumms $ and 4 we can use ove of three procedures.

A, Compute the Dy, and Dx,, {cols 7.8) and then
varir) = x40y +r%EDxf — 2rEDy,Dx, ]

]

1255V4217+0.584%(475) — 0.584(586)]

5.86x107% = (2.38x107 Y% |

#

Check: From el 7, £ Dy, = +7 = By, — Dy, from the sums of first and
secvond sdsctions in col 3. Simiarly for EDgy = +15 (eols 8,4). This
procedure sees columns 7.8 only.

Talle 13.2.1 For Computing Vartances of Two Retic Mesus sond Thede Dilferences
(Rl 1985, 6.5
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B. Compute Dh, and Dx, (cols 7,8), then Dz, = Dy, — rDx,, (col 13), then

var(r) = x” 25Dz
= 255 %36.7724) = 5.66x107¢ = (2.38x107 %2,

Check: From col 13, IDz, = ~1.765 = IDy,~rIDz,, from cols 7,8, This

procedure uses columns 7,8.13.
C. Compute zh‘; = Yo ~ TRy, (col 11), then Dzy, = 2, — 2y, (col 13), then
var{p) = x"zmzﬁ
= 255”2(36.7724) = 5.66x107*

Check: From col 11, ¥ z, = 0.003 = 0, escept for rounding errors. This
procedure uses columns 11,13,

The variance of r', denoted var(r'), is similar to var(r) and uses the other
5 columns (5,6,9.10,14). Its value is var(r") = 86.25 x 107* = (6.02 x
10732, Thus, if we use t, = 2.23 for 0.95 confidence inte}”vais with 10
degrees of freedom, we state 58.43 + 2.23(2.38) and 49.36 £ 2.23(6.02) for r

and r' for intervals in percentages.

For var(r — ¢") = var(r)+var(r')~ 2cov{r,r') we need the covariance also.
This can be computed readily from the Dz, and Dz'y (cols 13,14), but care
must be taken to distinguish the values with unlike (+ and ~) signs, marked
(*} in the column; then:
var(r ~ ') = x”%g Dz;"1 + x'"2 D'y, - Azx") e Dz, Dz’
36.7724  88.2080 55.3484

2552 1562 255 % 156

= (5.66 + 36.25 — 13.91)x 107% = 28,00 x 10™% = (5.29x107%2,

The coefficients of variation of the denominators serve as useful checks
on the stability of ratio estimators, needed for their approximations, and
ev(x) << 0.2 has been used for upper limits. Here we have
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3é‘«'tilt.t‘(x) = VAT 0.086 and@ = 1?)566 = 0.176

255

These meet the limit, but they are rather large and we can see reasons for
their instability. The data ave based on 10 differences only, and we may note
that only 1 or 2 of these account for most of the T Dxﬁ {cols 8,10) and the £
Dz (cols 13,14). This illustrates the value of having printouts of sample
details even in this age of computers (14.3).

The design effects are easily computed when the means arve proportions.
The I}yjz need not be computed for Sf,, since we use Sf,/n = pr(l = r)n - 1) =
vy ~ yim*n — 1) for the SRS variances in deft2=var(r)/vars“(r).

149 x 106

- - -l
VaTg(r) = grer—ser = 9.58x 10 defer) = 288 = .50 = o772
89.53 ~ ’
W TTXT9 ~4
varys(r) = 155z 3155 = 16.02x 10 deft?(r) = 3628 _ o 2.6 = 1.50%
16.62 ~ ~ )

var, (r = ') = (0.53+ 16.02)x10™* = 25.55x10™%

28.00

deft?(r = 1') = weme = 1,10 = 1.05%

25.55
Note: a) These deft? values are unstable, with only 10 differences (degvees of
freedom) for the denorninators (14.2). The four—fold ratio in deft®(r)/deft®(r) is
unreasonable, and the deft®(r)< 1 is most probably merely sampling variability.
b) The wvar(r — ') is reduced by covariance, but the SRS models assume
independence. ¢} The deft values (0.77, 1.50, 1.05) are damped by \/ and
they compare directly the effects on the standard errors. d) Values of deft are
most useful for checking for gross errors (14.1).
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13.3 COEFFICIENTS OF VARIATION, VAR (R, — R,) AND VAR (R,/R,)

Coefficients of variation cv(r) and relvariances ev?(r) are often useful for
designing sample sizes and for compering sample results (9.1). They also
permit more concise formulas for ratio means and functions based on them, as
we do below, They denote relative measures of standard errors and of

variances, respectively:
C, = S/xand C2 = S2% . (13.3.1)

The variations are expressed relative to their means . The words “coefficients
of variation” and “relvariances” are commonly used to refer (confusedly) both

to elements, as above, and to sample means, as below:

CV@E = Ste@E = DC,/ /% and CV(®)? = Var®/E® = D*C,%x413.3.2)

Here D? = Deft?, the design effects tﬁat modify the variances of designs, and
Defi = 1 for SRS (5.4, 6.6). The standardization removes the units of
measuremeht,s from C,, because they affect 5, and % similarly. It also
provides another kind of convenience with invariance to the constant factors n,
N, and fin ¥ = x/n and X = Nz:

Var(®) Var (%) Var (x)

= OVER) = = CV3x) =

CVi®) = .
§4 ]2 Bz (13.3.3)

Instead of the population values above, we usually deal with computed
estimates, denoted by ovi(x) = var (xV/x? for example, where x = Ex;, the
sample total. These estimates serve as checks, with cv(x)<0.2, for proper uses

of the ratic means y/x.

The various expressions of CV? are useful and sensible only to the
degree that the denominators, chiefly #% and ¥ and their multiples, are safely
positive. This is true for combined ratie means of positive quantities like areas
of holdings, household possessions and other physical variables. But CV? will

not be useful for differences and changes, which often vary around zero.
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We may begin with the basic variances of the ratio means r = y/x:

var{r) var(y) var(z) Z2eoviy,x)
= - or

-
e y2 %2 vz
ev?(r) = ev¥ily) + cv¥lx) ~ Zevly,x) . - (18.3.4)

Sometimes the products yx of two random variables are used, for
example crop areas x yields:
var (yx)  var(y) varlx) Zeoviy,x)
= + + or
ox? y? x yx

ov(yx) = cv¥ly) + evi(x) + Zeviyx) . (13.3.5)

Note the similarity of these expressions in relvariance terms to the
variances in var(y 4+ x) = var(y) 4+ var(x) 4 2eoviy,x). We must be reminded
that whereas the variances denote complete expressions, the relvariances refer
o appmximatiomsq from Taylor expansions (13.1), v'vmch devend on large
samples, also on denominators that are safely positive and relatively stable,
.theugh random.

Computing units dz‘g have been developed and illustrated for variances of
ratio rheans and for their differences (13.2):
var(r)= £dzf/x? and var(r; = ry)=Edzy /03 + Dldzy/x)f ~ 20dzy/x), (dz, /%),
K » (13.3.6)
Differences of ratio means are frequently used, and sometimes other
linear combinations alse. We can apply these relvariance forms to some of the
most useful functions [Kish 1965, 12.11). All these functions uiilize similar

basic computing forms, which can be combined into larger forms.



187
var ry — rg) = I (day,/xy — dzypfx,)? .

var (1) = Gl Tdz/x,1?.
var (S Wrp) = D5, Wydz, /x 12 . (13.3.7)

The last refers to a weighted index, which combines several ratio means
" from survey samples. Changes and differences of the index become extensions
of this concept. ‘

In addition to their linear combinations, the ratios of ratic means,
“double ratios,” are also used [Yates 1981, 10.5; Kish 1965, 12.118; Deming
1960, 390-396). For example, instead of comparing two subclass means with -
their difference (r; ~ ry), their ratio R = r)/r; may be often used; e.g., the
holdings, or crop yields, or fertilizer uses for two subclasses may be compared
as ratios. Again we must assume that the r, are positive, large, and stable
enough to be used in the denominators. The px.'eceding methods can be used to
show that: ’

var (R) = r," ¥[var(r,) + R%var(ry) — 2Reov(r,,ry)] or

ovA(R) = evi(r;) + evi(ry) — Zeviry,rpl. (13.3.8)

13.4 VARIANCES FOR COMPLEX STATISTICS

Variances for complex functions can be well approximated with complex
variance functions of simple sums by using Taylor approximations, similar to
those for var{y/x) (13.1). “Propagation of variances refers to an asymptotic

“method of approximate variances for functions of random variables in large
samples. Let the joint distribution of the statistics 7,73.....7y tend to the k—ih
variate normal form with mean values ¥, ¥5...., ¥ and dispersion matriz V
(all finite). This means that the variables (5, ~ ¥), Fp = Fooows Ty = T3
are in the limit distributed as a k-variate normal distribution with zero mean
values and dispersion matrix Vij . I gF,F00.F) 18 a continuous function
with continuous first partial derivatives (not all simultaneously zerc), then the
variable
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"= g(?l,yz....,?k} - g(?l,?z....,yk)

is distributed normally in the limit with zero mean and variance

5%, 6%, ” (18.4.1)

Here Vy; = Cov (7,5) and V;; = Var(¥,), terms in the k x k covariance matrix
of the k variates. §g/§¥, represent partial derivatives of the function. Thus the
variance of functions of variates can be expressed approximately and
asymptotically in terms of the variances and covariances of the variates.
Mustrations are given. Applications to complex functions that contain many
covariance terms should be accompanied with investigation about the quality of
the approximation” [Kish 1965, 14.2). The examples in Table 13.4.1 may be
useful.

Variances for medians, gquartiles, deciles and other guantiles are
frequently used in economic and social research. “Medion designates a value

¥y of a variable such that

Y; < Yy for half of the population elements. It is the most frequently desired
quantile or percentile — which are general terms for position measures. Other
familiar position measures are deciles and quartiles. The median is the second
quartile and the fifth decile. Although this discussion centers on the median, it

is applicable to other quantiles as well,

“We may want to estimate, for example, the vearly income which is not
attained by half of the families. Interest in the median is most common for
highly skewed distributions, when the median diverges considerably from the
mean. In such distributions the variance may be less for the median than for
the mean, because the latter is greatly influenced by large values on the far tail
of the distribution,
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Table 13.4.1 Examples of the Taylor {delta, linearization) method

Assume Bly) = ¥ and E(x) = X
o FOF @ @ 200

(1 2 (3) @) (8 (@)

Computable Variances

r= vy e rix Uz® 22 ~20x® x"¥Vary + R%Var x — 2 Covlyx)]
¥y x ¥ %% y@ 2yx - X% Vary + Y2 Var x -2 YXCov(y,x)
k?  %ky - dk%y? k2 Y2 Var y

k2/ay k% Var yiaY

B M2E

Ky ~liy® ky4 12 Var y¥4

“The variance of & median can be computed conveniently and
approximately by an indirect method, based on computing variances for
proportions for complex samples. It consists of several steps, which are
justified elsewhere” [Kish 1965, 12.9; Hanson, Hurwitz, Madow 1953, 10.17~
-18]. First, obtain 2 table and graph of the cumulated frequency distribution of
sample cases and compute the sample median value y,,. Second, compute the
standard error of a proportion p;‘ near the median values. Third, find the
desived lower and upper limits p; and p,. Fourth, on the cumulated sample
frequency graph find the ¥, and y,, values that correspond to py and p,.

Trichotomies and mautched dichotomies are often used in surveys and they
have similar variances, although their sources as variables appear very
distinet. 1) Scale values 0, 1, 2, (or 1, 2, 3) may be assigned to ranked
variables (low, medium, high), and the proportions pg, py, and p, are measured,
but the variances for mean scores are the same as for (pp — pg) &)
Differences between two cafegories of o multinominel may be measured by
d = (py — pg), disregarding all other categories. 3) Before~—after measures on
the same individuals may measure the net difference d = (pjp ~ pgy)
disregarding the unchanged cases pgy and py,, and we may conveniently
consider them as d = (py = pg) as above. 4) Comparisons of dichotomies for
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two variables for the same individuals have characteristics similar to 3),
because d = (p;y ~ Py disregards the p,, and pg, cases; e.g., comparisons of
preference for a specified fertilizer versus a specified seed. 5) Matched poirs of
individuals compared on a dichotomy can be analyzed sxmﬂarly to the
overlapping analysis of 3).

These very diverse have in common the correlations for individuals
in the difference (py, ~ py). The var (y/z ~ y'/x") presented in (13.1) and (13.2)
for complex samples include the correlations even when the x and x' cover the
same individuals. It is only in the SRS formula used for defi? that the binomial
formula po/(n — 1) must be changed to the vary,, (py ~ pg) = [lpy + py) ~
(py = pp*Vin ~ 1) [Kish 1965, 12.10].

13.5 REPEATED REPLICATIONS, RESAMPLING: JRR, BER, BOOTSTRAP

These three names denote three distinet but related methods for
computing sampling errors for complex statistics, alternatives to the Taylor
approximations presented sbove. Each method relies on replicate; comprising
the sample of basic units; in complex surveys these are the primary selections
(or ultimate clusters), e.g. 20 replicates in the sample of Table 13.2.1; in SRS
the n elements are the replicates. Those replicates are cornbined into larger
subsets to form replications; these replications compuse subsampies of the
y@é}ethod.
Statistics (means, regressions, etc.) are compidted from these replications,

entire sample and they dre selected in dxf'fer%nt ways for & ?%1

similar to the statistics computed from the entire sample for which the
variances are wanted. For example, in Table 13.2.1, random selection of either
a or b from each of H strata would yield two half-samples as two replications,
and their differences would estimate the variation of the entire sample. But
with only one degree of freedom it would be a very peor, unstable estimate.
Therefore, each of the methods has developed procedures for repeated replications
or “resampling” methods for obtaining more stability (degrees of freedom) for
the variance estimates.
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Jack—knife methods were the earliest of these procedures but they
referred to selecting from SKS samples of size n, “pseudo—samples” of aize (n
- 1}, selected repeatedly n times. This was adopted to complex samples with
“jach~ knife repeated replicetions (JRR) [Kish and Frankel 19741, For 2H
paired replicates from H strats, a random replicate o from each stravum is
replaced by its paired replicate b. Thus the replication contains the entire
sample of a+b replicates in H ~ 1 strata plus two b replicates and zero o
replicates in one stratum. These jackmkxﬁfe esiimates g(J,) are repeated for
all h strata and their variance varg,{g(J)} estimates the variance of the
tistic g8} b on the entire sample. Even better and simpler is the
estimate var;p{g(S)} = HgW,) — g)1®. And even better is the variance that
also uses the complement replications CJy, which now discards the other
replicates b and doubles the o replicates instead. Then vargc{g®} = £ gy
- g (Cd h)]2!2 . These jack—knife computations are simpler and easier to learn

than other methods of replication.

For example, consider the 20 replicates in 10 strata in Table 13.2.1, 5nd
compute varelr} for r=0.5843. We may compute y+y,,~y;,~149+11-9
= 151 and x+x;, = Xy, = 255+19 —~ 16=258 and J; = 151/268 = 0.5853.
Then (J, = r)} = 0.5853 ~ 0.5843 = 0.0010. The ten values of (Jy ~ r)10?
are {0.10,0.79,~1.98,~0.28,0.35,~0.49,~0.10,0.53,0.70,~0.32} and from
these we may compute vargglr = B, - )% = 5.88x107%. This compares
well with var(r) = 5.66x107% computed in (13.2). Furthermore we may also
compute its complement CJ; = (149-11+9)/(256~9+ 16) = 147/252 = 0.5833.
This (J, = CJ;) = 0.0020 and the 10 values of (J, — CJp)x10% are
{0.20,1.57,~ 3.86,~0.60,0.72,~0.97,~0.20,1.04,1.38,~0.67}. From these we
can compute vargefr) = Ed, - CJp? = 5.67x107%, very close to the
5.66x10™* we first computed.

Half—sample replication leads to another method of repeated replication.
It also can be illustrated Table 13.2.1 by constructing two half samples from
the a and b selections respectively from each of the ten strata. Thus Iy, /Dx, .
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= 78/135 = 0.5778 and Dy, /Dy, = T/120 = 0.5917. Then d; = (0.5778
- 0.5917)%4 = 0.4830 x 10~ is one estimate of error, an example of how
unstable one degree of freedom (or a few d. of £.) can be and another estimate
from that table was 41.00 x 107* (14.2). There are 2H=1 yavs of choosing
the H pairs for the half samples, and their average would yield all the stability
the sample can provide, but that effort would be too large, e.g. 2% = 512,
Howaver, balanced repeated replications (BRR) provide a method for balancing
80 as to obtain all the available stability from H strata from only a few more
than H patterns.

Bootstrap is an attrsctive name for a newer technique of resampling,
which has much in common with repeated replications, I believe, However, its
development seems to be more theoretical and rather distinet from the first
two. But no simple procedure seems to be available for ready applications to
stratified, clustered survey samples.

JRR, BRR oand Bootstrap each rely on distinet methods for repeated
mpl‘ications or repeated resampling from the entire sample bose. JRE and BRR
have been and can be used as alternatives to TAYLOR approximations and a
relative appraisal seems appropriate [condensed from Kish and Frankel 1974).

1. “All three methods gave good results for several statistics: means,
coefficients of regression and of correlation, simple and partial. The mse
values have small relative biases, and the proportions of #(s) values
conform well to P, espectations. We now bave three good methods for
these difficult tasks.

2. “The relative biases and the t(s) proportions umprove as expected for

increasing sample size, from 6 w 12 to 30 strata.

3. “The BRR method was consistently the best when judged by the criterion
we believe most significant: the closeness to expected Py of the actual
proportions of t(s) values. The BRR performed consistently better than
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JRR, and JRR performed better than TAYLOR. The BRR's better
performance is particularly neticeable for simple and partial correlation
coefficients, where JRR and TAYLOR are less satisfactory.

4. “The variability is consistently lowest for TAYLOR and highest for BRR.
The differences are small, and apparently have less effect than the relative

biases on the closeness of t(s) values.

5. “When judged by several criteria, none of the three methods showed up
strongly and consistently better or worse. The choice among methods may
depend in most cases on relative costs and simplicity, and these will vary
with the situation and with the statistics. TAYLOR methods may be best
for simple statistics. like ratic means, and BRR and JRR for complex
statistics like coefficients in multiple regressions.”

Since 1974, programs have been written that make TAYLOR methods
much more available, especially the SAS programs (Shah 1979) and
SUPERCARP (Fuller 1975). In conclusion, there exist three methods that are
increasingly available for either hand or machine eomputations. The
CLUSTERS program from the ISI in the Hague is anat@er. They are all
satigfactory and much better in most situations than the evasions derided below

{14.4). Choice among them may depend chiefly on convenience,
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CHAPTER 14. GENERALIZED SAMPLING ERRORS

14.1 DESIGN EFFECTS: DEFT? AND ROH

Acrording to the simple, clear view of “measurable” probability samples,
the estimate § and its standard error ste(y) = |/ var(§) can be both computed
from the (large) sample itself, and statistical inferences can then be based on
intervals like ¥ 4 tp ste (), . However, inferences ave more complex in most
survey situations, aside from the problems of nonsampling errors and biases,
The term "sumpling ervors™ is often used in order to cover those broader needs
of survey sampling: 1) Mean~square errors = MSE(y) = Var () + Bias? () is
meant to include other sources of errors, in addition to sampling variances
(Ch. 15). 2) Coefficients of variation, cv(§) = ste (F)/§ and the relvariances
eV (¥ = var (PIEP are useful for positive (¥>1) variables as relative
measures of variability by removing units of measurement and especially for
shewed variables (e.g., income, size of holdings). 3) The cvfx) = ste (x)ix of the
denominators of ratio means r = y/x are useful as checks on their stability. 4)
Design effects, deft? = var(¥/var (), where the var (¥) are the simple random
varfances syzln; are useful in several ways; they provide relative measures of
variation by removing the effects of basic slemental variability syz and of
sample size n. 5) The ratios of homogeneity, roh = (deft? ~ W& — 1) are
more portable than deft? by removing the effects of sample cluster sizes. §)
Components of the varinnce would provide theor_etically sounder paths of
importance, with separate components for each stage of selection and
stratification. However, such computations are rare, because they would be too
complicated and the residual results too unstable. 7) JAveraging) of sampling
errors (values of deft and roh) is frequently used for greater stability to
facilitate generalizing and inferring; also for simplicity and brevity, and
especially for greater stability (14.4). 8) Tables of sampling errors are often
used for presenting averaged sampling errors. In research reports they may be
the only feasible procedures to inform readers of the approximate values of
sampling variability.
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Several reasons for sveraging, pooling, generalizing sampling errors need
to be mentioned, because the standard statistical literature tends to peglect this
topie. 1) Teo many statistics are presenied in most survey reports for separate
coraputations of standard errors for all of them.  With modern computers it
may be feasible to compute ste (§) for the cverall means of sll important survey
variables. But this is less feasible for all the subelass means often presenwd in

survey reports, and impossible for all comporisons for subclusses. Furthermore,
analysis and presentation of those results to the readers of the reports must be
condensed some way, often in tables, 2) Difficulties of computing valid
estimates of sampling variation from complex semples for complicated
analytical statistics may lead to conjectures from other statistics of the same
survey and from models based on other experiences (14.2 and Table 3.4.1 cell
C3). 3) Unstable estimates of standard errors, because of low “degrees of
freedom,” often result from too few primary selections for samples even when
the number of elements n are large; also for design domains of most samples:
“pooled” average deft values may be preferable (14.4). 4) Designs for future
samples depend heavily on values of deft® and roh computed from “similar”
surveys, “Borrowing” the wrong values will decrease the efficiencies for the
borrowing designs; but they can be computed later unbiase;d estimates from
their own results. 5) But “borrowing” sempling errors from other surveys,
instead of computing them, can result in biased estimates. For example, deft?
values are often borrowed, but these can be biased, because they depend on
cluster sizes; and roh values are more often “portable.”

External needs, like the last two, should be distinguished from internal
needs for design effects. Deft® is good for conjectures internal to the same
sample base, design, and size. But for conjectures to crossclasses of different
sizes. and even more to other samples with different weights and selection

rates, roh values are more portable.
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Clustering, stratification and weighting ave three features of sample
selection with important efferts on sampling errors. Variances are not suitable
for pooling, because the units of measurement must be removed, and deft? and
rok are more generally suitable than coefficients of variations cv?, Note that
both deft® and roh are designed to vield rough, siraple, single statistics for
complex designs. Each may cover several parameters, such as unequal cluster
sizes (B, and b, in the population and sample), and diverse selection methods
and stratification in several stages. However, neglecting to separate the
vaviance components is usually less important than the differences between
variables and between subclasses.

Defi?(y) = Var@)lVar%@) is in most situations relatively simple to
understand, also to compute as var (F/vary(¥). The var(§) denotes SRS
variance; and fox: sample means () of self— weighting (EPSEM) selections var
F,) = ‘3!:1; and s?ln = p{l —~ p)/(fx ~ 1) where §¥ = p for proportions. We
need not discuss here whether the factors (1 ~ ) and (o —~ 1)/n should or
should not be used, because these are of relatively small magnitude and
discussions can become technical. Formulas and computing programs often
provide usable values of SRS variances for statistics other than means, such as
for various coefficients of linear regressions (Table 14.8.1). It is useful to
compute and present defi(V) values for the overall means only for all survey
varipbles. 'I‘heyV can vield useful conjectures of deft’ values for other statistivs a8
well (14.3).

In addition to its direct use for ¥ itself, and its indirect use for
conjectures, values of deft® are useful in several more ways. They serve
practitioners as checks agninst gross mistakes in computations for variances;
usuglly in cluster samples we should expect 1 < deft® < U, Values just below
1 may be due to sampling fluctuations, but very low values should indicate
mistakes. The upper limit U, should be guessed by the sampler; excesses may
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indicate mistakes in computations. Excessive values may indicate that the
design was poor and should be changed in the future; but for that purpase roh

values may be more useful than defi?,

Subelass means usually require flexible interpretation of the values of
deft?, and they can be as important as the overall means. For design
subclasses (e.g. provinces), the deft’ values are useful directly. They can differ,
depending. on both population distributions and on sample designs, and in
complex ways specific to situations. For example, urban areas may have
different selection designs imposed bn different population distributions than
rural provinces. The overall deft® should be close to the weighted average of
deft® values for all the design subclasses comprising the total.

Crossclasses on the other hand behave differently and the value deft?
= [1 + roh(b, — 1)) provides a preferred approach to these situations. This
ratio of homogeneity is computed as roh = (deft? - I)I(Ec -~ 1}, where Ec = n./a
is the mean sample cluster size for the subclasses of sample size n, spread into
a primary selections. Because the sizes of n, and b, = n.a can vary greatly
for different crossclasses, the deft® will also differ greatly even for the same
survey variable. But computing and presenting d«ef‘t:‘.'2 for all crossclasses is
often not feasible. On the other hand, often roh does not vary greatly, and
values of roh, = (deft?, = 1)/(b; ~ 1) based on the entire sample are relatively
stable, and “portable” and they can be used for crossclasses. From many
empirical computations we find that rob, = 1.,2 roh, are good rough averages
for imputing roh, from roh,.

Roh is & useful extension of rho = p, the correlation of intraclass
correlation, defined as Deft? = [1 + p (B — 1)] sirictly only for equal clusters,
all of size B, But the extension to unegual cluster sizes b, averaging b = na
has withstood many tests. It is useful for crossclasses, and it also is more
“portable” than deft? to other sample designs for the same population; also to
ther, “similar” populations, but that with more care.
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Weighting, however, has different effects, which were ignored in
discussing roh above. When deft? and var (%) include the weighting effects,
they sre useful indicators of the overall effects of design. However, the
increases (1 + L) due to “random weighting” remain relatively constant, and
do not decrease for crossclasses as clustering effects do (12.8). Thus for small
crogsclasses the effects of (1 + L) may be considerably greater than the effects
of rob due to clustering which decrease with size. Therefore, the following
roundabout computation is suggested for computing var (¥,) for crosaclasses (s)
or for enother sample from var () of an overall weightsd mean (note the
intermediate deftu®): var(y) — deft®§) — deftu® = deft(¥)/(1 + L) — roh =
{defu® ~ 1/ — 1) — deft’, = 1 + roh (b, ~ 1) — deft? = deftu®, (1 + L) —
var/(§,).

The values of voh and (1 + L) may be relatively stable for crossclasses
within the same sample. But for inferences to other designs, to other
weightings and to other populations, thuse values may need to be changed.

14.2 APPROXIMATIONS, CONJECTURES, MODELS

We may suminarize here the status of sampling errors for different kinds
of atatistics, based on several earlier discussions: in Table 3.4.1, in Section 5.4
on stratified element sampling, in Section 6.6 on clustered sampling, in Chapter
13, and in Section 14.1

1. For means and totals bused on the enlire sample, several satisfactory
methods for estimating sampling errors are available when samples are large
enough (14.4). Computing them for all survey variables or for most variables
is recommended, because their sampling errors (variances, deft® and rob) can
differ greatly, -

2. For meons and tolals of subclasses the same methods as for the entire
sample are available. However, the practical feasibilities may differ because
vsually there are too many estimates for all survey variables to compute
variances for the many types and categories of subclasses anslyzed.
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Furthermore, the subclass sample sizes may become so small that the variance
estimates may become unstable, especially for design subclasses (14.4). For
design domains the deft? tend to resemble on the average the deft? for the
entire sample. On the other hand, for crossclasses values of the deft? tend to
approach 1 with decreasing sample bases, as the roh values are more portable
because they tend to remain roughly constant.,

4. For differences between subcloss means the methods used for means
can be and have been extended. For crossclass means the values of defi?
approach 1, often rapidly. Because the numbers of possible comparisons are
often so large, the possibilities of computing and presenting s.émpling errors for
all of them vanish and strategies of computing, averaging and presenting them
must be devised (14.3).

Table 14.2.1 Deft = _/asr for Standard Errors of Five Types of Statistics from Three
Complex Samples [Kish and Frankel 1874]

Sample Set & B C
Means 1.11 1.80 L4
Simple correlation coefficients 1.10 1.26 1.36
Regression coeflicients 102 1.30 111
Partisl correlation cosfficients 1.04 1,40 1.38
Multiple correlation coefficients Na 1.46 1.89

4. For linear combinations of means generally, as for their differences

speéiﬁcally, the techniques used for means can be further extended (13.4).

5. For complex analytical statistics based on clustered samples (cell C3 in
Table 8.4.1) the situation is more difficult but deserves a brief discussion, For
some statistics, e.g., linear regressions, both “Taylor” and repeated replications
have been used to compute sampling crrors (18.5, 14.4). First, the results
have shown considerable design effects and ignering them would lead to serious
over confidence in sample results; Table 14.2.1 shows values of deft > 1 for
diverse coefficients for regressions from three distinet samples. Second, deft
values within data sets are related and they tend to be somewhat less on the

average than for means; thus defi values for means may serve as convenient
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uppér limits for deft wvalues for coefficients. These conjectures and
approximations carry some risks, but they can be considerable improvements
over alternatives [Kish, 1987, 7.1]. For example, using the standard errors
based on SRS (or I} assumptions, which are often awailable on “canned”

cormputing programs, can lead to underestimates of actual ervors.

14.3 STRATEGIES FOR SAMPLING ERRORS

I surveye would produce only a few statistics, Vg computing and
presenting ste (J,) for all of them would present few difficulties. However,
most surveys concern rogny statistics and for many varisbles. Furthermore,
beyond variances and standard errors other expressions of sampling errors are
also needed often. A brief review of useful rules follows.

1. Identification codes for strata (h) and for primary selections (o) within
strata must be available for all elements () in the sample in order to permit
computation of variances. These should be supplied early at selection time and
should be available on the data tapes.

2. Any weights w; used for the elements in estimation should be
available and used also for variance computations,

3. Compute uar(j?x) for many survey varinbles (g), based on the entire
sample. These overall variances are important survey results, and they also
sérve as bases for conjectures for other statistics, such as subclasses.
Variances are relatively easy to compute with modern programs
simultaneously for many overall means. The variances will differ greatly
between variables, and even the derived sampling error functions can vary
congiderably. The values of ste (ng = \/' var@e) can be computed jointly, as

well as the functions below,

4. Sampling error functions deft’(¥,) and deft (§,) should also be
computed; also roh = (defi® — 1/(F ~ 1) where appropriate; also cvz(yg) =
.var®g)figz where appropriate, and cv@z). Computations of the values for
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deft?(y) = var(y)/(syzln) are simple for proportions ¥ = p, when they arve
5,% = (2}"‘; - 09 (n — 1) must be computed. The
synthetic rob has reasonable interpretation when b = n/a refers o the mean

(1 = p¥in —1); otherwise

primary cluster size of n elements selected with EPSEM in a cluster. However,
for considerable departures from EPSEM the corrections (1 + L) for weights
should be used (14.1 and 12.6).

5. Computing ond checking ev(z) < 0.2 is a useful caution egainst
unstable ratio means, r = y/x, where % is the variable denominator; often x =

n, the sample size; but this roay be Dy, when weighted.

6. For crossclass means roh = (deft® — 1/(b — 1) is more useful than
deft®. A tabular display of computed values for the overall means of ste, deft
and roh for all variables is useful (Table 14.3.1 and 14.3.2). Columns may be
added for values of deft? = 1 + roh (nja — 1) for several (8 or 4) selected

values of crossclass sizes n,.

7. Tables of ste (p) and ste (p, ~ p;) can be presented for several values
of p and of sample sizes n,, and ny, [Kish 1965, 14.1]. See also [Gonzalez et al
1975; USCB 1978, Ch. VIII]

14.4 STABLE SAMPLING ERRORS

Unbiased estimates for wvariances get a great deal of attention in
sambﬁng literature, and we must avoid bad biases for all aspects of sampling
errovs; for example, SRS variances‘for complex surveys can cause harmful
underestimates of true variability. However, another common problem that is
difficult to treat also needs attention: the lack of stability, the high variability,
of estimates of sampling errors, which is often due to too few primary
selections (ultimate clusters) on which the computations of variance arve based.

Below are four types of comunon problems among others.
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Table 14.8.2 South Korea Fertility Survey [1973]
Sampling Errors for 38 Variables

1 2 3 4 5 [
Variable®* Variable Description Mean  Std, Dedt Rolh  Mean Ratio
Mumber ) . Emror Bubcl. 5/4
Roh

513 Sales, Clerk, Prof.,, Husbend Oce. 040 030 2674 146 148 100
512 School 10 + Yrs., Husband Q.41 g8 2203 091 Qe oM
509 Urban Background 027 022 2204 081 A22 134
530 Rurs! Background 063 02  A138 086 110 128
s10 School H. 8. <+, Wife 018 018 218 082 089 1.08
511 Wife Currently Working 0.09 013 1.938 066 Bi 1.63
232 Family Planning Worker Contact 025 019 1898 062 AN 2.1
315 Can Plan No. of Children 0.8 018 1800 061 057 0%
428 Abortion Costs < 3,000 066 02 1728 089 M43 oM
516 Rich Living Status 029 018 1788 D4 083 1,74
LU} Age st Marriage < 21 Years 0.52 020 1.734 D47 066 1.46
333 Want Another Son, Given Quly One  0.37 019 L7111 45 £95 208
321 Ideal Number of Children 318 037 1688 042 032 L3
538 No Work Experience Q.70 017 1.63% ki 078 1.96
225 Ever Used Birth Control | 0.5 018 1598 036 035 096
31 Visited Health Conter 014 012 1563 034 47 1.38
207 Ne. of Abortions (1963-73) 0.61 D49 1546 033 046 1.40
320 Ideal Number of Sons 233 055 1527 032 019 0.8
226 Mo, of Children at First Contraception 3,10 058 1.256 026 097 3.73
&2 Marriage Diuration (Yrs.) 11.47 252 1413 D24 0% 9.38
214 Mass Media Tells of Contraception  0.40 016 1.400 023 032 1.41
103 Number of Live Births 339 063 1381 021 012 0358
104 Number of Living Children 314 084 1.318 Ry 010 $.62
319 No. of Children Desived 173 042 1.296 016 019 117
224 Ever Used Pill | 0.21 011 1204 011 020 L7
422 Wife Should Do Contraception [ X T & 1204 011 016 1.50
237 Age at First Contraception 29.37 A62 1.099 009 RO 1.18
428 Believe Abortion OK a7 011 1.164 o8 018 2.41
e No. of Pregnancies (1963-73) 2.85 052 1.132 007 004 057
334 Want & Son, Given No Sons 0.69 b1z 1.325 O 007 110
227 Using Contraception Now 0.14 809 1.094 005 Rl 2.13
638 Age st Marrisge < 25 092 007 1063 003 001 -0.50
238 Marriage - First Contraception (Yrs.) 875 78 1.027 002
103 Pregnant in 1973 031 012 1.044 Ritrd 010 507
108 MNo. of Miscarringes (1963--73) .16 012 1.041 02 00 1.58
340 Husband Decides Fertility 032 01t 1.026 001 004 381
139 Me. of Living Sons 162 028 1022 001 014
223 Ever Used Loop 018 007 0.7 009 -015 171
s Want = 2 Children 049 006 0721 011 002 -0.21

Mead over 39 Variables 1.471 D327 0444 115

Ratio of Means Col. $/Col. 4 1,338

* The first digit of the Variable Mumber denotes: 1) Fertility Experience, 2} Contraceptive Practics,
1) Birth Preferences and Desires, 4) Attitudes, 5) Socio-economic Background, 6) Demographic
Variables.
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We are concerned chiefly with sample surveys, but these problems are
similar o experimental designs, and may be even more common and severe
there, and should be so recognized; also in observational studies, or controlled
observations. First, let me clarify the common and important problem by
describing its several specific manifestations. Then we can discuss several
-possible approaches.

1. Few sites. Sometimes entire nations! (or provincial) surveys must be
confined to 10 districts or 10 schools. Furthermore, statistics for provinces,
states and other geographic subclasses are often based on few PSU’s (districts,

counties) even for large national samples.

2. Nationo! samples of 20 to 80 PSU’s. Even for national sarmples of this
size the coniputations of variances are based typically on 10 to 25 pairs. of
selections, or “degrees of freedom.” These also vield unstable estimates of
sampling errors, especially for variances of comparisons, such as var(® - %)

for two subclasses or two periods.

3. Interpenetrating sumples. These designs have been advocated with 4
replications for national samples, or ten replications of complex samples have

often been designed and used in order to facilitate computations of the ste ().

4. Repeated replications (RR). These methods for computing standard
errors are often called balanced repeated replications (BRR), “half—sample” or
“pseudo” - replications, or jack-knife repeated replications (JRR). Sometimes
they are based on 16 pairs of combined replications, or 16 “degrees of freedom”
(12.5),

What can we do about these problems? A gingle sampling unit is
useless, but from two PSU’s one can compute unbiased estimates of variances.
Some are willing to stop there, especially since there is no other number beyond
two PS5U's (and 1 d.0, that can be denoted as a clear boundary for
“measurability.” Also 2H PBU’s in “paired selections” from H strata serve as
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bases for many designs of survey samples. With H “large” or “not too small”
these are useful, although it is naive to believe {(as many do) that such paired

selections are either necessary or sufficient for good survey design.

Here are some slternative ways “to pool” sampling errors, “to borrow
strength” where the replicates (or the d.f.) are too few. These methods imply
“modelling” implicitly in different ways and to different extents. However,
they may be better than “unbissed” but unstable variances; the sample errors
of the computed ste (§) are approximately /1/2d, where d = degrees of
freedom. Thus for 4 interpenetrating samples C.V. [ste 3] = /T/6 = 0.4,
and for replications, \/i/—fs' = (1,24, both much too large for many practical
purposes.

a) Pooling over periodic surveys of the same design and variables would
probably be the first choice when they are available; and those are used
fruitfully for labor force surveys in the USA, Canada, Sweden, ete.

b} Pooling over design clc;sses of the same survey maay be the choice for
major domaim; (regions, provinces) of one—time national samples, This may
be readily done by computing errors for the entire (m}tiunal)‘ sample and
increasing it in proportion to the reduced sizes of design subclasses. It will
often require separation of strata (e.g., urban and rural) if these have different
designs and different stratum sizes between the subclasses. The technigue
essentially assumes equal “design effects” (deft?) across subclasses and the

entire sample.

¢) Pooling over crossclasses and the entire sample has been practiced
frequently., Because the deft® vary greatly, rough and modified equality is
assumed for values of roh, = (deft? — 1)/(b, — 1).

d) Pooling over all varighles of a survey has been practiced. However
such pooling of deft? is crude because those valués vary a great deal. For
example, with b = 100, and rho values ranging from 0 to 0.1, the deft? varies
from 1 to 11
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e) Pooling across similar variables and similar designs poses difficult
questions sbout the sets donoted as “similar.” However, these are frequent
sources of “borrowing” values of either deft® or roh. The World Fertility
Surveys are sources of many examples, and are probably better then most
(Table 14.3.1).

£) Second singes of selection (secondary sampling units, SSU’s) can
usuélly vield many more replicates; usually there are several blocks, segments,
E.D.’s, etc., per PSU (district, county, etc.). These methods will yield biased
underestimates of variances, because they disregard the clustering of the 88U’s
within the PSU's. Perhaps with modelling some components may be added o

correct for those biases.

g) Collapsing strate of PSU’s has been used to increase the d.f. of
computations. The 2H PSU’s in pairs from H strats have only H d.f.’s; but in
triplets will have (2H)(2/8) = 1L.8H, in guadruples (2H)(3/4) = L5H, and 2H -
1 without any strate. It has also been noted that systematic computations
with 2H - 1 pairs will yield the precision of 1.3 H pairs. Collapsing strata
vields biased overestimates by disregarding the stratification of PEU’s (13).

h) 'Modelling of the sampling errors may go further than in the methods
above, each of which also depends to sormnewhat limited extent on models for
“borrowing strength.” Most common are probably computations based on
simple random sampling (SKES), but these often yield very bissed
underestimates of variances for clustered samples, excé})t when the clusters

are very small, including statisties for small crossclasses.
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CHAPTER 15. BIASES AND NONSAMPLING ERRORS

15.1 BIASES AND VARIABLE ERRORS

This vast and critical subject poses extraordinary difficulties and
contradictions. On the one Band, the problems belong mainly to survey design
rather than to sample design (1.1). Systematic biases by definition are not
strictly caused by sampling, because they can be expected to be similar even in
complete censuses conducted under “similar essential conditions.” The
sampling statistician cannot be solely responsible for control of nonsampling
errors and biases, which concern chiefly measurements. On the other hand,
statistic theories and technigues are needed for measuring errors of all kinds
and statisticians cannot neglect that vital task. Furthérmore, sampling errors
should be closely related to nonsampling biases when sample surveys are
designed. Nonsampling errors are best investigated, -measured and controlled
in cooperation between sampling statisticians, survey technicians, and subject
matter specialists.

In agricultural surveys nonsampling errors can be particularly difficult,
diverse, and large. The problems of measurement are often formidable, and
they can differ vastly for various crops, for factors of production snd
consumption; also for different provinces and different countries. (1.2 — 1.4)
The subject is impossible to cover in a brief chapter, but also impossible to omit
entirely from this book, What can be said here that has not been said better in
the vast literature on the errors of agricultural censuses and surveys? Instead
of a feeble aﬁwmpt at comprehensive coverage, it may be better to emphagize a
few topics that are too often neglected, altheugh they are important.

The variable errors of sampling and the nonsampling binses cause more
problems than their counterparts: that is, the sampling biases and variable
nonsampling errors, which also exist. In agricultural surveys the effects of
“interviewer variance” may be large, if the interviewers are few and not well
standardized. These four classes result when from two dichotomies we
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distinguish sampling from nonsampling errors, and biases from variable errors,
élt.hough neither distinction is easy or entirely clearcut. The ervors of sampling
concern chiefly the selection of sampling units, but measurement operations fall
largely outside its domains. The errors of statistical estimation and analysis,
however, often become joint concemsy for both statisticians and subject—matter
specialists (12.1).

A widely accepted model in sampling theory combines variable errors
and biases into the “total error,” or root—mean—square error RMSE=/MSE,
and this mean-square—error is

Ely, -~ 71 = ElJ, - EGYP + [EF,) — 7 = VE? + Bias’.(15.1.1)

The expectation is taken over the distribution of all possible values of the
estimator §, determined by the sample design. The mean square deviations of
all possible sample results from the target value ¥ are analyzed into two
components: the mean square deviations VEZ? of the variable ervors around the
average value E(¥) of the sample design; plus the Bias? denoting the deviation
of that average E(F,) from the target value §. There exist philosophical
questions and doubt whether this target or population value ¥ should be
separated from a true value Yo, by (EF) = Fuul? = [EF) - .77 +
[V. Vypel?. Nevertheless the separation of biases from variable errors in
Total Error = V/(VE? + Biag?) 18 of primary and practical importance.

Between biases and varisble errors we can make several broad, genersl,
and useful distinctions. First, biases can be considered as a set of constants,
defermined by the essential survey conditions, although their values remain
largely unknown. Biases have the same effect Bz on any sample estimate ¥,
regardless of sample size, also on their expected value E(¥.). Biases represent
the difference [E(¥) — ¥] between the expecied sample values and the
population target value 3. Variable errors express the difference §, —~ E(F.)
between the estimate and its expected value; they would fluctuate, would be

smaller or larger, plus or minus, if different samples were selected with the
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very same deéign. Specific values of the differences §, ~ E(¥,) are unknown,
but their “average” (long~run) value is measured by Ste(y) = “/Ei? - BN
which is estimated by ste(¥) from the sample data.

Second, the total bias is the algebraic sum EB_ of binses from all different
spurces g. Some may be positive distortions, others negative, thus often
partially cancelling each other. On the othgr hand variable errors take the
positive form DS¥m,, where S2 is the unit variance and m, the number of
units selected for the sample for the component v. For example, 5%/m, could
represent the clusters and S%/mb the elements of a two-stage selection; and

S%/m, the “interviewer variance” from m, interviewers.

Third, bisses ean be reduced only by doing something betier: by
improving the guality of some operation, some “essential survey condition”; e.g.
reducing nonresponses, better inwrviéwing, ete. But the reduction of variable
errors depehds chiefly on selecting more of somet.!ﬁng: by increasing the number
of units m, of some kind, either sampling uuits, or observations. or cbservers.
Sometimes the unit vaviance S% ean be reduced also, as by swratification of

clusters, or by better training of enumerators.

Fourth, variable errors can be estimated with designs and computations
based on data from internal replications of units within the sample itself.
Thege estimates require proper designs for replication of units ~ whether
sampling units, or observations, or observers. On the other hand, estimating
binses depends on methods external to the survey itself, with two alternatives,
both of which assume better standards or “benchmarks,” rather than eorrect,
exact values. Quality checks with betier methods can measure individual
biases, their variations as well as their averages, and perhaps separate the
diverse sources of biases. Comparisons with external sources can estimate only

a net average bias that may seem the effects of several sources.



220
Fifth, biases and variable errors have different effects on various
statistics: they can differ greatly in their absolute and relative - values.
Specifically, the ratio of Bias/VE is much greater on the overall means than on
subclass means, and even less on the comparison of means where variable

errors usually dominate (Fig. 15.2.1).

15.2 EFFECTS OF BIASES

The separation of biases from wvariable errors represents wuseful
theoretical stances (models), which depend on specific situations. For example,
for national samples, the sampling units like counties and districts (and smaller
and mere numercus units like EDVs and segments) are sssigned for random
selections. But regions and provinces srve trested as domains and omitting
some would be eansidéred a8 bias. Even more illustrative are the biases of
individual enwmeraters, whose effects are better treated as “enumerator
variance” o be reduced by taking larger numbers m, w reduce their effecis
8%/m,. However, the eﬁ'ect of using a type of interviewer {mal: or female,
level of training and education, ete.) is assigned to “essential survey

conditions,”

T;eat:'mg the separaze biases 13g and their sum L“Bg as constants is also a
stance that needs to be examined. If they were well known and accepted their
values would be subtracted. Sometimes, however, enough is known or
suspected sbout them that some adjustments are made and accepted. The
Bayesian statisticians say that unimodal distributions gbout the Be are move
reasonable views than fixing them as constants. However, practical

applications of this principle seem difficult and rare.

Clearly the importance of the magnitudes of biases By must be weighed
in relative terms rather than absolute, and four frames of reference are in
occasional use, 1) The magnitude of the statistic is relevant; for example, a
bias of B tons may be neglected for large crops like rice, wheat or corn, but
could be important for small crops like some spices or such. Those examples
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.were for wotals, but the magnitudes of means and rates also provide scales of
reference for judging the importance of biases. The ratio of Bias(FV¥ or
Bias(§)/Y resembles the coefficients of variation CV () = Ste(F)/¥ that has
been mentioned often. 2) Policy implications in lude both the magnitude of the

gain or loss represented by the statistics, and the feasibility of corrective
actions based on them. 3) The structural basic varigbility (seasonal, yearly,
eic.) of the statistics also prbvides background. 4) The magnitude of variable
errors, chiefly sampling errvors, is perhapg the best standard for measuring
biases. That is the aim of the “bias ratio™ Bias(%)/Ste(¥), or Blo, or Bias/VE.
This ratio of the two main types of errors also has the advantage that the
denominator of variable (sampling) errors can and should be designed to take
into account the first three kinds of magnitudes noted above.

e

3

Figure 15.2.1 Variable errors (o) and biases (B) in root mean square errors (RMSE).

The bases represent sampling errors and other varisble errors (¢} Fof example, oy may
be the stel¥) for the mean ¥ of the entire sample and oy may be a larger ste(¥,) for a subclass
mean, and o3 may be the ste(F,. ~ ¥) for the difference betwean two subclass means.

The i represent bi (B) and the hypotenuse denvtes the RSME =

/(;2 * BZ). (1) For the entire yample that biss B, may be large compsred with the verisble

error oy, thus taking larger samples would not decrense the RMSE | by much. (2) However,
with the seme bias By, but with a smaller sample in the subclass, the ratio changes and the
@y dominates the RMSEy; and this is not much larger than for (1) despite & much smaller
sample. (3) Furthermore, for the difference of means. the net bias By may be much amaller;
#0 that even with s larger og, the RMSEg for the dilference is but listle greater than RMSE,.
This drastic change in the gias rativ Ble tends to appesr not only for differences betwsen
subclasses within the same sample, but also for differen e d wa. [Kisgh
1987, 2.4.1)
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The “total error” = RMSE = \/yp2+pias? = VEV(] + Biss2VE?) the
bias ratio is seen as the relative increase in the RMSE that is due to biases. In
survey sampling the RMSE (the root—mean—square-—error) or MSE is widely
accepted as principal criterion of accuracy. Further justification rests in the
relative invariance of error probabilities of confidence intervals for RMSE's
instead of STE of the same size [Hansen, Hurwitz, Madow 1953, 2.2; Cochran
1977, 1.9; Kish 1965, 13.8). '

The effects of biases can differ greatly for various statistics even from
the same survey. There are, of course, very gréat differences in biases among
different survey variables, but also for various statistics based on any survey

variable, We can only illustrate this vast, complex subject by the wery
’ different effects of nonresponses on several major types of siatistics; consider
the simple model of y=Y/N=W ¥, + W, 5, with W, and ¥, representing the
proportion and mean for nonresponses [Kish 1965, 13.4B]. 1) Simple expansion
totals ¥, =yJf would have a relative pias RB= (¥ ~Y)¥=-Y_/Y=-W, 7,7,
proportional to the “y content” of the nonresponse stratum. For example,
omitting from the frame small firms or small farms incurs in this simple
expansion a bias to the degree that stratum is not “empty of y content.” 2)
The mean ¥, and ratio expansions based on the mean, however, are subjeci: toa
different RB=W_(¥,-¥,/5. The bias depends on the product of the
nonreésponse portion with only the difference of the t;wo means. 3) For subcloss
means the RB will be similar to the overall means except for interaction terms
between differentials for nonresponse and for subclasses. 4) Subelass
comparisons show dependence on “interaction” terms: and the RB =
W, = Fnla =W, G, ~ Y)Y ~¥,) . Comparisons of biased results (e.g.,
two subclasses of the same survey, or similar means from two periodic
surveys) often benefit from (partially)“cancelling” biases. *“Additivity” in
components often tends to reduce bias terms of multivariate analyses. But
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contradictory examples should caution against automatic assumptions of totally
cancelling biases. 5) Multiveriote statistics may also be subject to biases of

response and nonresponse in ways too complex to explore here.
Table 15.2.1 — Sources of Principal Types of Binses

Sampling Biases
Frame biases
“Consistent” Sampling Biases

Constant Statistical Analysis Binses

Nonsampling Biases
Nonobservation biases
Ezclusions
Noncoverage, missing units
Total nonresponses: refusals, not—at—homes, incapacity
Item nenresponse, unascertained, missing data
Observational biases
Field data collection
Office data processing

The listing of the main sources of biases (Table 15.2.1) needs only brief
comments. Saempling binses should be small in well—designed samples and
they are of two contrasting types. The sources of frame bicses have been
desecribed (Ch. 4) and their control may be chief contribution of the sampling
statistician. Frame bigses can be very bad but usually they can be controlled,
(relétively well, if not perfectly) except for noncoverage, which is'treated
separately (15.3). On the other hand, “consistent” sampling bisses should
seldom be important in samples of reasonable magnitude and design. In
statistical theory “consistent” refers to estimators whose bias disappears in

large samples; for example the bias of ratio means (12.2).

But constant biases of statistical analysis differ from the sampling bias
sbove. For example, using medians to estimate means (or vice versa) could

result in bad “biases” (differemces) for many of the skewed frequency
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distributions often found in surveys. Such differences exist in the population
and are not reduced by sample size. They belong to the joint domains of
statistical and substantive analvsis (12.1).

'Nansampling biases may be divided into errors of nonobservation (15.3)
and of observation (measurement), which should be divided into two types.
Those that arise during field operations (interviewing, enumeration, counting,
measuring) are more difficult to control and to measure; and duplicate
chservations on elemonts are not feasible usually. On the other hand,
processing, coding, tabulating and computing errors are easier to control, and to

measure with replicate observations.

g
Ehases

o ’ z
‘\o\‘\t g ;

Vanable errors

HMonsampling
variabie ervors

Field

Figure 15.2.2 Clasgification of Sources of Survey Evvore [Kish 1985, 13.2)

Sampling errors are shown arbitrarily with three components. Variable errovs, sampling
and nonsampling, combine with their summed squares. The total bias is the algebeaic sum of
all bi ing and nonsampling. -
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15.3 NONCOVERAGE AND NONRESPONSES

Biases of nonobservation result because of failure to obtain data from parts of
the population, and because they don't occur with EPSEM, unlike the (N ~ n)
nonselected elements after randomly selecting n elements. The many different
sources of missing date may be combined inte four main types usefully,

because these four require different treatments.

1. Exclusions, deliberate and explicit, of portions of the population, which
may have different justifications (besides saving effort), can be illustrated with
a few examples. a) Some provinces or islands may contajx; few if any of the
kind of holdings (or other elements) sought for the survey population. b) Larger
cities may be excluded from some agricultural surveys. ¢) Areas above x
thousand meters of altitude may have little or none of the crops being covered.
Other examples are found in other situations and the portions of the areas and
populations being excluded should be clearly idemtified. In some situations
estimates may be computed for the effects of exclusions on statistics and
perhaps even adjustments introduced, parvicularly for totals. Exclusions relate
closely to noneligibility in defining the population coverage (e.g. by age, sex,
residence, etc.), but it may be better to maintain the distinction. Furthermore,

deliberately and explicitly identified exclusions differ from noncoverage.

2. Noncoverage denotes failure to cover in the actual, operational
éampling frame, in contradiction of the population definition, some of the
elements, or some clusters of elements, some sampling units. They are units
missing from the sampling frame (4.2), and omissions due to faulty cxecution
of survey procedures. They differ from nonresponses, because their location,
their numbers, even their very existence, are usually unknown. To estimate
them, measures external to the survey would be necessary; a) either some
guality check, such as post—enumeration surveys for censuses, but these are
expensive; b) or statistical checks against outside sources, such as demographic
checks made on population census data. The population undercounts of even

good decennial censuses can illustrate the problems, which are often even more
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severe in surveys. Besides underestimates of aggregates, the means and other
statistics are also subject to biases, because noncoverage occurs not at random,
but in different proportions in various subclasses, which in turn are correlated
with survey variables. To the degree that differential nonresponses may be
estimated for meaningful subclasses, adjustments of results may be useful
[USCE Ch V; Kish 1965, 13.3]. Finally, the net noncoverage is the result of
gross undercoverage minus gross overcoverage; this latter may often be kept low,
but it also can occur, and it has been investigated in crop-cutting
measurements,

3. Nonresponses usually denote “total” nonresponses, as distinguished
from “itern nounresponses,” which may require different treatments.
Nonresponses refer to various sources of and reasoms for failure to obtain
observations (measurements, responses) on some elements designated for the
sample. Thus they differ from noncoverage, because their numbers can be
counted, and the response rates computed, if and only if ccournie gecounis e
kept for all (eligible) elements designated for the sample. These procedures
reed some care and effort, and are necessary for estimating response rates,
perhaps their possible effects, and also possible adjustments. Reporting the
extent of nonresponses has becorne the saccepted responsibility of better
surveys. All these aims can be better served hy sorting nonresponses into

several major classes, as below.

4, ltem nonresponses refer to unascerigined items (variables) from cases
{elements), where many (most) survey items have been obtained. Reasons for
those missed items are varied: refusals or incapacity of respondents; ervor by
enumerators; unusable, invalid, incorrect answers; lost or erased items.
Imputing (editing, assigning) answers for itemn nonresponses seems more
reasonable than for total nonresponses for two reasons. a) Because more data
(variables) are available, imputing missing itemns can be done more accurately
{as in multivariate regressions with good predictors). b} Multivariate statistics
could have large proportions if missing cases, when these can result from any
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single missing item; the produet ryryoryps.. ¢an become small even if all
response rates are large. Imputations aim at reducing bisses from missing
items without greatly increasing variances with unegual weights, and several
methods are available [Kalton 1983]. Imputations may also be applied
fruitfully to total nonresponses, especially in periodic surveys when responses
on other waves make imputations both more feasible and more advisable. Also
sometimes good auxiliary data may be obtained for total nonresponses from

other data sources, or from neighbors, or from brief screening enumerations.

Classes of nonresponses are named here for interviews at households and
holdings on location, but the terms can be translated to telephone or muail
surveys and to other methods of data collection. All categories refer to eligible
respondents; ineligibles (closed farms, vacant dwellings, stores, garages, ete.)
should not be ineluded in the counts of nonresponses. a) Not—af~homes (NAH)
refer either to entire holdings or to households or to specific respondents, and
these can vary greatly with type (holder, employea, housewife, any responsible
adult, etc.), also with numbers of callbacks. There are operaticnal differenves
also between temporary absences of the respondents and empty farms or
houses. The NAH may be for an hour, day, week, season; NAH denotes
temporary unavailability and deferral rather than demial of response. b)
Refusals, on the other hand, denote denials of interviews and are less
temporary and changeable, more fixed and uncbtainable. ¢ Inability or
iﬁcapacity may refer to physical or mental illnesses that interfere with
responses for the entire survey period; or to illiteracy or hnguage barriers on
some surveys, 4) Nof founds can ocour on mail surveys, not attempted in case of
ingsccessibility (due to costs, distances, dangers). e) [ost schedules denotes
information lost or destroyed after field collection, when repeat efforts are not
feasible [Kish.1965, 18.4].
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15.4 CONTROLS POR NONRESPONSE
Methods for reducing nonresponses must be based on knowledge of the
sources of nonresponses and of differences among response rates. For
exarople, city dwellers are more likely to be both NAH's and refusals than
rural and farm people. Definition of respondents seems important: housewives
{especially with children) and “any responsible adult” are more easily found
and interviewed than specified, employed aduits. Some guestions thow many
children?) are easier to obtain than others (what was your income?).
Identification of the agency or institution conducting the study may matter also.
These factors should be in the background while considering suggested methods
for reducing the effects of nonresponses. This brief list cannot do justice to the
vast volume of available material on this subject [Madow, Olkin, Rubin 1983;
Kish 1965, 13.5; Z&r!mvich 1863, Ch. 71.

1. Better procedures is mentioned mefely as a reminder, because specifics
are impossible in this briel space, and because it is difficult to invent a good
method (feasible and not tpo expensive) when so many have been tried already.
But it is painful to see newcomers repeating mistakes that have been often
exposed; for example, to see surveys without caﬂbacks;, or mail surveys without
repeated mailings, when these have been shown to be so effective. But it is
also harmful to use methods proven useful in some situations transposed to

others, where they gre guite inappropriate.

2. Coll-bocks (or repested mailings, and other repeated efforts) are the
most widely effective methods for improving response rates. With ¢ calls it is
possible to reduce not-—at—-home rates of q o ¢° w the degree that the g
remain relatively constant. This is often close enough for actual rates up to ‘3,
4 or even 5 calls; and thus not—st-—homes of g can be brought below 10
percent. We must overcome a common mistake about the costs of callbacks. It
is true that making ¢ calls on a set.of n addresses is more expensive than
making single calls on each. But it follows not that achieving n interviews with
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single calls would be much cheaper than with ¢ calls. The actual increase is
often slight! [Kish 1965, Table 13.5.1I] Refusals present different and more

coraplex problems.

3. Subsampling of nonresponses is only helpful when callbacks use much
mere expensive methods than first or earlier calls, This negative advice follows
fromn ordinary callbacks not being much more expensive, being often productive,

and also from increased variances from weighting for reduced sampling rates.

4. Bubstitutions for nonresponses seldom provide effective remedies
because: a) substitutes are more like responses than nonresponse; b) they tend
to reduce Beld efforts for better responses. For these reasons substitutions
may be better justified a) when entire large (primary) units are substituted in
the office, rather than in the field; b) if complete disclosures about substitutions
are made,in order both to inform the readers and to deter the survey team

from too many.

5. Adjustments for differential response rates may be made, although
these may be less successful than for item nonresponses for the reasons stated
above.
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CHAPTER 16. SURVEYS ACROSS TIME

18.1 REPRESENTING TIME -

Timing of surveys can be especially important in agricultural surveys,
where so many activities of production and consumption are tied to seasonal
and temporal production. Careful timing may be especially critical for less
developed agricultural populations, where good records may be lacking,

Represgnting time spans involves choosing reference periods for surveys.

To avoid confusion we need to distinguish three kinds of periods
concerning any survey: @ collection period during which data arve collected;
reference periods defining the data, which may differ greatly for diverse crops
and statistics; and reporting periods which can consist of one or more reference
perivds. For example, for the U.5. Census the collection in period is a few
weeks in April, but the reference and reporting periods are April 1 for current
data, but the whole preceding calendar year for agricultural and economic data,
ete. In multiround and cumulated surveys the reporting periods are pooled
from reference periods. Reference periods may be as short as a single day or
even & minute {in time studies) but they are cumulated for reporting; or a week

{for employment) or moenth, or as long as a year {for income).

‘ 1. Unigue of special periods may be accepted from natural forces; e.g.
seasons for harvesting crops, also for lambs’ births, for mensoons, etc. Dates
fixed by laws, rules and customs - like Christmas, New Year, fiscal year,
month’s end, Sundays (or Fridays or Saturdays) ~ seem arbitrary, provincial
and temporary, but they are fixed for the population, hence beyond the designs
of researchers. -

2. “Typical” (representative) periods are commonly used; perhaps too
commonly in confusion either with uniquely fixed times (1) or with proper
sampling of time (4). One good example is April 1 for the reference dates of
decennial censuses of the USA, which is now traditional. Another is the choice
of the third week to represent each month in the Current Population Surveys
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[USCB 1978]. There are many examples of choosing “typical” (representative)
perieds by judgment in preference to sampling the time dimension; these
resemble the “t}fpical" areas, which had been commonly used alse for spatial
representation until the recent spread of probability area sampling.

3. Complete and seporate voverage of all reference periods over the
reference interval is a temporal analogue of 2 complete census over all
administrative areas. These vield data for all periods, for changes between
them, and also averages over them, e.g. the yearly survey over all 52 weeks of
the Health Interview Survey [NCHS, 19858]; different examples arise from time
series for some finsncial data., We can distinguish continuous from
discontinuous periods over the entire intervals; the Current Population Surveys
[USCB 1978] cover all 12 months over the year, but only one “typical” week to
represent each month, Continuous collection of data is seldom feasible; but
reference periods can be, &s in multi—round surveys, and from these the
aggregates and means for entire intervals can be computed. However these
raise naturally the possibility of sampling instead of completely covering all

reference periods.

4. Sampling of separate periods over a time interval can be an alternative
to either confining the sample to one or a few “typical” (repreéentative) periods
(2) or complete coverage of the entire interval (3). Models of temporal variation
can be made similar to spatial variation: as a target population varies in
space, 80 we can consider time as another dimension of variation. Populations
vary from vear to yesr and week to week, as they vary among regions and
among counties. Probability sampling spread over the population area serves
as the accepted strategy 1o cover and counter spatial variation. But temporal
variation can be even more important, especially for cyclical variations, e.g.
seasonal, weekly, or even diurnal. Vast eémpo’ral fluctuations also ocour in
epidernics, economic fuctuations, socigl and political attitudes, and rapid and

widespread changes have become common. To cover and to counter these
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chahges either complete coverage or sampling is needed. However, for many
characteristics that have temporal stability but much spatial variation, spatial

coverage may be more crucial.

- B, A temporal x spatial matrix for averages (marginals) for both
dimensions can be designed for periodic samples. A good example again is the
Health Interview Surveys [NCHS, 1958] that yield weekly national averages,
yearly statistics for small domains, and monthly and quarterly data for larger
domains. The samples are too small to yield both spatial and temporal details
simultaneously; but each period can be designed to sample the entire population
area; furthermore the periodic samples can be so controlled that they cumulate
w subtotals (regions) and totals (national) that are balanced (stratified).

16.2 CONCEPTS AND DESCRIPTIONS

Decennial censuses of populat.ions have been used for decades or
centuries, but periodic sample surveys are newer and increasing rapidly in
aumbers and scope. It is important tw clarify basic concepts and terms to

reduce the remaining confusion.

Repeated surveys denote “similar observations on the same population,”
whereas periodic surveys refer to surveys repeated at specified regular periods
over a longer interval of time. The “same popﬁlation” needs identification
because populations change over time both in extent and in content: e.g., cities
and couniries change boundaries; for complex units (farilies, organizations)
changes can be frequent, because their constituents (persons, adults) are born,
die, and migrate. “Similar cbservations” must also be defined, operationalized
and collected.

Overlopping designs refer to covering' the same sampling units in
repeated periods. The overlapping units may be defined as the elements of
analysis (individuals, persons), or they may be larger units, such as area
segments. Units such as holdings, households, composed of distinet elements,
present problems of frequent and complex changes. Designs may require either
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complete or partial overlopping; the latter permits gradual changes of the
sampling units. In nonoverlcpping designs the units are changed deliberately

for each period.

Panel surveys refer to overlapping studies with repeated observations on
the same elements, on the same persons or households or holdings. Panels face
problems of learning, fatigue and losses from mertality and mobility; of moving
and high locating costs; and of identification for complex units, like families; but
they are needed for detecting the dynamics of gross (micro) changes of
individuals. (though these get confounded with errors of measurement.) On
the other hand, for measuring net (macro) changes of averages it may be easier
and clearer to overlap simpler and larger units of sampling (such as area
segrents) and still retain much of the gains in the variances from correlations.
(Some studies have done both: retain segments for cieé.r net changes, but also
follow moving individuals for gross changes.) The gains from correlations are

also retained propurtionately in partial overlaps. Net changes may be

measured also with partial and nonoverlapping samples, though with higher
variances. Panels have also been called longitudinal surveys and “strictly

longitudinal studies.”

A third use for overlapping and panel studies is for obtaining incidence of
new events between two (or more) dates (pericdsj, in contrast to measuring
prevalence of all events at one time. These are called multi—round surveys by
some and prospective studies by others; they stand in contrast to retrospective
studies that depend on memories or records for past data. Such prospective
designs should be panels for measuring individual changes, but they can be
nonoverlapping studies for net changes. The collection of data on new events is
sometimes aided with records (diaries, budgets) kept by respondents, or by

others, or by machines.

Multi—round and prospeciive studies are usually designed to be periodic
continuous studies, in order to cover the entire time interval of the study.

Continuous registers can sometimes be used for this and retrospective studies
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attempt this by relying on memory. However, other repeated and periodic
surveys may give only digjoint “snapshots” of the time span; e.g. decennial

censuses often yield data for census years separated by ten year gaps.

16.3 PURPOSES AND DESIGNS

In Table 16.3.1 we note five purposes and six designs, with pairings
which call attention to designs that best serve each of the four purposes, with
reduced variances. Most periodic studies have several purposes and thus we
should face — not necessarily and completely solve ~ the difficult problems of
multipurpose designs. Actually, current levels (A) and net (macro) changes (C)
can be served with any of the six listed designs ~ but with some increase in
the variances or in costs. But individual (gross, micro) changes (D) need
panels, and cumulations (B) need some changes. The chief variation shown for
these designs concerns the amount {and kind) of overlaps between periods. The
‘rotation scheme of complete overlaps shows, with ass—aaa, that the periods
have zll common parts; the nonoverlap with aaa~bbb shows noné; and the
partial overlap abe—cde~—efg shows ¢ and e as 1/3 overlaps bevween succeeding
periods only.

Table 18.3.1 — Purposes and Designs for Perodic Semples

Rotation
Purposes Designs Scheme
A, Current levels A. Partial overlaps 0<P<1 abe—cde—elg
B. Cumulations B. Nonoverlaps P=0 aas-—bbb—cee
C. Net changes C. Complete overiaps P=1 240248888 — 882
(means)
D. Gross changes D. Panels game elements
(individual)
E. Multipurpose E. Combinations, SPD
time series
¥, Master Frames
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This section concentrates on the effects of wvarying the proportions of
overlaps P in diverse designs for different purposes; in complete overlaps P=1,
in nonoverlaps P=0, and in partial overlaps 0<P< 1. Much of thé discussion
assumes for éimpiicity that the periodic samples are of the same size, or of the
same sampling fraction; but changes in sizes, fractions and desigos ave

possible, and even desirable in some cases, as noted below.

Current levels is one name for the most common type of estimates for
single “points” in time, whether the point of reference period is a single day or
even minute, or a week, month, or even & year; but “static” estimates and
“eross—section” are other. commonly used terms. Variances of current
estimates are the same for complete overlaps P = 1 and for nonoverlaps
P = {; they can be expressed briefly for means as Defi®8%n, where Deft® is
the effect of the sample design on either the element variance 8% or on the

sample size n.

That simple formula alse holds for simple means from partial overlaps
(O<P<1). But statistics based on them can utilize the overlap P for a
reduction of the variance with & complex mean: with help of the correlation R?
between surveys within the sample overlap P, the portion (1 ~ P)=Q of the
precéding sample is combined with the cwrrent mean to improve it. The
variances are reduced by the factor [1 ~ QRIM1 — QPR This is & clever
technical contribution, much explored by sampling theory, though actual gains
unfortunately tend to be modest in most practical situations [Cochran 1977,
12.11-121

Cumulations refer to the purpese and practice of accumulating, pooling
and aggregating sample cases of individuals. Means based on several periodic
samples covering a longer interval is the purpose we trgat here, but the
implications are similar for other statistics, such as regressioms and other
analytical statistics. The aims of " cumulations are threefold. First, they
obtain grester precision, with iower variances from larger sample bases,
especially important for smaller domains. _Second, from the larger sample
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bases of cumulations we expect also greater spatial spreads of the design, so
they can better cover small downains. Third, they can cover temporal
variations — seasonal, cyelical, irregular- — over longer intervals that include

peveral periods.

Samples with no overlaps, P = 0, are best for curmulations. They are
simpler and also yield lowest variances: S%2 for two periods and S#/J for J
periods, where the sz are variances for single periods assumed to include
DEFT? and factors like (1 — ). For overlapping samples, however, positive
correlations B between periods increase those variances for means, totals, ese.
Thus curmulations can be had even with partially overlapping samples; good
compromises can be obtained, for example with P = 18, which is optimal for
current levels and also good for net changes. However, optimal allocations of
P = 0 for cumulatibns remain in conflict with optimal P = 1 for measurix;g
changes, ’

Net changes refer to the differences d = (%; ~ %) of means between two
periods,; whereas gruss changes deal with the total changes of individuals, some
of which remain hidden (because they cancel) in the net change of means.
Measuring net (:hanges are common and important aims of surveys and
studies, and theyr are also related to other uses of the data, Perbhaps the most
common forms are differences in dichotomies, denoted by proportions, such as
d= (p; = py), and in similar rates and rativs. We can also use the form
d = (¥ = §), which denote aspects of design where, happily, statistics can yield
great gains. The variance of (¥ — ¥) can be greatly reduced when the pair of
variables have high pusitive correlations R in overlapping samples, and we now
turn to several aspects of great flexibility that may be explored in statistical

designs for differences.

1. The variances of mean differences are reduced by factors (1 — R} in
complete overlaps, which is the extreme (with P = 1) of the factors (1 ~ PR),
which may be obtained from pai't;ial overlaps for minimizing var(¥ — ¥). But
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partial overlaps are used in practice: a) for reasons of feasibility, to reduce
burdens, fatigue and biases of respondents, and b) to reduce variances of other
statistics in multipurpose designs.

It is simple to think of the variances as (28%m) for differences between
pairs of samples of size n without overlaps; 28%m)(1 ~ B) with complete
overlaps; and (28%mn) (1 — PR) with partial overlaps P. The S$%n assumes
simple random sampling. but for comf;lex samples design effects Deft? should
be included, and reductions obiained from overlaps in complex samples may be
even greater than indicated by the factors (1 — PR).

2. One may obtain almost the full reductions of complete overlaps even
from partial overlaps by using improved. estimators for the differences. In
those estimators the overlap portion P gets larger weights by factors 141 ~ R)
than the nonoverlap pertion 1 —~ P = @, because the overlapping elements
contribute that much less to the variance. This improved estimator of the

difference is
BE ~ 5 = [PG ~ %), + Q11 ~ R§ - 2001 ~ QR). (16.3.1)
Its variance may be expressed, for two sre samples of size n, as:
o _en = (1 ~R) 28%
VARDG - 2] = r—qr & (16.3.2)

" These effects are shown in Table 16.3.2 with a = (1 — PR) for the
simple difference and b = (1 ~ R/(1 ~ @QR) for the weighted difference. This
factor approaches (1 — R) for high values of R (where most important) and for
highet values of P, say P = 2/3, as seen in the last two rows of Table 16.8.2,
High values of R are common for stable characteristics that can be well
measured, but not for volatile or poorly measured characteristics or aititudes,
Negative values of R must be rare, but that side of the t;ble with negative
values, can be used instead to see what happens to sums of two means (£ + %)
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when the factors are (1 + PR). We also add again (as in nete 1 above) that
factors Deft® in complex samples may enhance considerably the gains from
overlaps, because Deft? are less for the differences.

Table 16.3.2 Effects sn Variance of Differences of ny for Several Proportions of Overlap (P)
[Kish 1985, 12.4)

Megative Values of &, Positive Values of £,
4 L]
o 4 o 0,8 e 0.6 D8 8.2 02 04 06 08 09 1095 18
gl @] 133]1271 0201 113 1.07 ) 10D 0.93 | 0.87 | 0.80 0.73 L 070 ) 0.68 | 087
L B L3017 LG LIT) 106 100 092 082 087 D43 035 0140
@ ] 150 1,40 130 1.0 100 180 1 090 000 090 .60 ) 0.35 ) 0.22) 090
M2 lvss)sae i)y iee ]| 100l 0so 0s] 057|033 eislei0]0
o] LET 1531140 1271 L1300 087 073 0480 047 040 037 033
23 0y liso) ez 13 ] ize | 112 1eo | 086 | 069 | 050 027 | 0ie 007 0
90

180 | 1601 1.40 | 520 | 100 | 0.80 | D.60 | 0.90 | 0.20 | 0.10 | 005 | 0

(24

1.0

These effecis are 8 = (1 = PR) for the six;xple difference {12.4.8°), and & = {1 - RW1 ~ @R}
for the weighted differmnce. Two equal, unrestricted saples are assumed.

3. Great flexibility can be used in choices of sampling units for the
overlaps. Using elements as sampling units is needed for gross changes from
panels and they vield generally the highest values of R, hence the lowest
variances. But‘t.hey also have great problems, and therefore larger units,
clusters of elements, must be used instead for the overlapping units, in many
situations.

Compact ares segments, containing several dwellings and their
occupants, have been widely used for overlapping samples [USCB 1978; Kish
1965, 9.5, 10.4, 12.5C). Ildentification of dwellings and persons with the
segments are feasible if well done. Each period’s sample retains its character
as a probability sample of the population, despite the moves of households,
families and individuals; despite births, deaths and migration, the stability of
area segments retains representativeness of its inhabitants, It is true that, due
to those changes and moves of the elements, the correlations R between periods
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is proportionately reduced; but the reduction affects only the changing portion.
Hence overlaps based on segments retain most of the correlations R for

measuring net changes.

4. Greater flexibility may be used in the second and later waves of
interviewing and generally in the data collection in the field. The first wave
must bear the initial costs of selection, contact, cooperation, and some basic,
core information that later waves may reduce or omit. Therefore, in later
waves the costs per case (clement, interview) can be made lower (little or
mmuch) than on the first wave. They may be done sometimes by different
methods, perhaps by telephone or mail instead of personal interviews. This
helps to explain the popularity of the large overlap portions P for periodic
surveys, larger perhaps than are indicated by variances per case (n). Thus in
the Current Population Surveys overlaps of P = 7/8 are used, with the last 7
of 8 waves conducted mostly by telephone interviews [USCB 1978]. In some
situstions responses may also be better in later waves, but that is a complex
and difficult subject.

Panels denote samples in which the same elements are measured on two
or more occasions for the purpose of obtaining the individual changes d; =
(x;5—%;;). From a good sample of the d; we can estimate the distribution of
individual changes for the N elements in the population. Furthermore, from
the mean of these internal changes of individuals we can also estimate the net,
xhean, external change: T(x;, = ¥;)n = Dxpo/n — Txy/m = (& —
However, from the net change of means one cannot estimate (directly) the
gross change of individuals. This duality of changes has various nANes:

indjvidual/mean, gross/net, internal/external, micro/macro.

Only panels can revesl the gross changes behind a net change; for
example, a +2 percent net change of behaﬁor may hide x+2 percent positive
and x negative changes, where x may be small or large, unknown. Strong
models could substitute for panel samples in theory; but in reality these exist

only for some special individual variables: age, parity (births) for women; some
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incurable, chronic diseases and infirmities; some acquired and permanent
immunities; yvears of education, etc. Sometimes changes can be traced reliably
from memory or from records. But often models and memory are both lacking
or unreliable, and only panels can vield the data needed for individual, micro
changes. These are needed not only for their frequency, but also for the

dynamices of relationships and causation.

On the other hand, panels may be too difficult and not feasible for
diverse reasons (mortality, mobility, refusals). Often, however, neither
advantages nor disadvantages seem absolute; rather they should all be weighed
against each other. Here we need to clarify also differences between panels
and complete overlaps, Panels define special cases of complete overlaps when
the sampling units are the elements themselves. But sampling units such as
area segments used for overlaps differ from panels because of mobility and
mortality in the population. Overlapping samples based on stable area
segments can be preferable for pood current estimates and net changes; they
have been so usad in many surveys, e.g. the CPS [USCB, 1978l Ares
segme;nt.s are more stable in rural portions, less in cities, and even less on their -
suburban fringes. Such stability (in degree and in time span) also describes
their value for measuring changes [Kish 1985, 9.5,12.50).

With their unique advantages, panels can reveal results ixndiscovered by
otheér methods, but they are not common because of their difficult problems.
Even less common are complete overlaps (P = 1), because they would have
mot of the problems without the completeness of panels. Since area segments
have fair stability of people in short periods (about 82 percent of households
over & year in the UBA 1985), the variance of mean (net) change (%, ~ ¥,) is
reduced by the factor (1 ~ R') where R’ ig little less than the R from panels.
Other benefits (lower costs) and some, il any, disadvantages (i.e., refusals) are
also proportionately inherited [Kish 1987, 6.4; Duncan and Kalton 19886].

.
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Multipurpose and Combined Periodic Designs. Most periodic survevs canm,
should, and do serve several purposes. Current estimates and net changes can
be readily satisfied jointly using any proportion of overlaps. Partial overlups
can be designed for both current levels and for net changes. High overlaps are
better for net changes, but low overlaps also (e.g. P = 1/3) can be made to
vield low variances with improved estimators, and they are betier for current
levels (6.2A42 and Table 6.2.2). But high overlaps are often used because of the
lower costs of later waves. Split panel designs (SPD) [Kish 1987, 6.5] would
incorporate two separate designs that have conflicting properties, advantages
and faults. A portion, say P = 1/4 or 1/3, would be for a panel for individual
changes; it would also provide overlaps and thus reduce variances for mean
changes and for current levels, with correlations (R) with oll periods. The other
portion (1 ~ P) would provide nonoverlapping samples to permit cumulation;
hence they should have increased spread for cumulating periods. The two
sample designs could be quite distinet to suit efficiently the needs of each. But
the measurements would need to be similar to permit the corbjnation of the

two sets of results into single series of statistics.

16.4 PANEL STUDIES

We described (16.1) five alternative ways of representing time in
reference periods. Now we distinguish four mugjor alternative woys for the
collection of datn over time.

1) Retrospective data refer to methods based on the memory of respondents to
report data over lengthy perieds; from a year to a lifetime, for example
(because all responses even for short periods are retrospective in a trivial
sense). 2) Hegisters, records or direct observations may sometimes be
preferred, but are often too difficult. 3) Longitudinal s;udies, foligw~wups,
multi~round surveys arve terms used for repeated observations of
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populations over longer intervals. 4) Panel studies involve repeated
{periodic) observations (interviewing) of the same elemens (subjects,
persons, families) [Kish 1987, 6.1C, 6.4].

Hegisters and records are too specialized a subject and of too many
possible forms for a brief treatment here. It would be best to concentrate on a
twofold comparison of panel studies. On the one hand, a pauel study of k
periods can be compared to k distinct samples, and this comparison is more
basic. Thus a sample of n elements (households or holders) may be observed in
k periods for a panel, compared to a total of kn elements in k nonoverlapping
periodic samples of n each. The costs per interview are somewhat cheaper for
a panel [Freedman, Thornton, Camburn 1880; Duncan 1984]. On the other
hand, there are interesting comparisons, chiefly in epidemiology, of retrospective
studies wversus prospective studies, each confined w‘ one sample. In
retrospective studies memory and records are used t rewrieve the needed
longitudinal information, and the costs per element are much higher for the
panels than for retrospective studies based on single visits to the sanple
individuals.

A.  Panels versus Distinet Samples

1. Initiol self—selections. Any sample of humans probably involves
some form and some amount of volunteering, hence self—selection, hence
potential bias in representation. However it has been noted often that the rate
of refusals is increased cénsiderably when respondents are asked for
cooperation in a long—centinued panel afier the first call.

2. Attrition continues after the first call, but at a8 much reduced rate.

This attrition has two forms: refusals due to “pane] fatigue”, and nonresponses
due to disappesrances that cannot be traced. We distinguish these from losées
due to temporary nonresponse, or mortality, or changes, or mobility, all treated

" separately below. The refusal at the first call may be, let us say, as high as 20
percent, but the attrition after that may be as low as 1 or 2 percent on each
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call. Nevertheless, these small losses can also sccumulate to & sizeable total
after many calls, But these effects are extvemely variable; and fatigue and.

refusals are much less in rural and in less developed areas (see 14 below).

3. Temporory nonresponge, either not—at—home or refusal, may be
considerably higher than attrition; say 3-8 percemt versus 1-2 percent,
depending greatly on timing and kind of procedures. Hence they must be
included in later calls, and their data interpolated with retrospection and with

imputation.

4. Mobility must be treated distinctly from inevitable attrition. First,
mobility may be much greaiter than attrition, depending on the population, and
on the time interval covered; hence lossss could accumulate to prohibitive
levels. Second, t.k{ey can be much reduced, with encugh care, effort, ingenuity;
and the Hterature conveys much good advice, specific o situations, but
translatable to others. Mobility has entively different effects on panels than on
overlapping sampling units, such as area segments, which are self—correcting
and reflect (in expectation) the changing population. Inngiw'dinal studies of
restricted sites with permeable borders, such as a single area, will reflect great
mobility.

5. Changes of the elements can be considerable for complex units, like
families, holdings, organizations, instivutions, firms. Dealing with them in a
pé.né! requires much skill, knowledge and experience. Such changes genarally
refiect similar changes in the entire population, as does mortality.

6. Mortality affects the entire population, and its treatment would be
different and sirapler for & study defined by and confined to the initisl sample
and population. Within that definition the panels suffer no worse defects than
changing samples, either from mortality, or from other'forms of outmigration,
or from changing elements. That is why we separate the panel effects of
changes mortality, and births (5,6 and 7), from attrition and other specific
defects of panels (1,2,3,4).
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7. Births and immigrotion should be introduced into longitudinal studies
defined by ever changing, living and complete populations, with births into as
well as deaths from it. They must include some method for introduéing births
and migratimx; in contrast to studies confined to the initial population (6 above);
also in contrast with non--panel methods defined by stable units, such as area

‘segroents, even in overlapping samples.

8. Retest renctivity, panel bias, panel contamination, sensitizing or
learning are all names given to the fear that the experience of past interviews
{observations, enumerations), and the anticipation of future ones, may change
the behavior and attitudes, opinions of ‘the individuals in the sample. Any
effects would depend on many factors involving the nature and timing of
observations, of the study variables, and of the population. See 14 below for
beneficial effects. -

9.  Reinterview laxity has been raised as a possible source of bias: that
both the respondent and the interviewer may be subject to inertia, and to
similar answers they must (unintentionally) recollect from past interviews,
Interviewers may also become generally somewhat less careful on return visits.
The “rotating group bias” of the Curreni Population Surveys is the best known
example, though a rather confusing problem [USCB 18781, But see 14 below
for asdvantages of familiarity.

10. Checks and controls are desirable to guard against possible biases
from the use of panels. These can take so many forms and are so dependent
on specific situations that listing them here seems futile. Checks can generally
be of two kinds: comparigons in available background variables, like age and
sex, and in the study variables that are more critical but also more difficult to
validate. But see 13.

After those ten possible defects we come to four possible and considerable
benefits of panels; three of these advantages (12,13,14) are also shared in good
portion by overlapping sampling units.
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11. Only Panels yield data on individual changes.

12. Lower costs per interview than for changing, nonoverlapping
samples are common, in spite of the widespread hostility to panels. First, only
the first wave bears the sampling costs, both in the office selection and
designation and in the field work of identification and gaining access and
cooperation. Second, the basic background data concerning individuals (“face
sheet data™ are mostly borne or more costly in the first wave., Third,
acquaintance with the element (holding, holder, household) facilitates contact;
for example, the timing of calls (interviews). Fourth, (and this is most
variable), later calls can cost much less, if done by telephone, mail, or some
other cheaper procedure on all or on most of the sample, when this seems not
feasible for the ﬁrst' wave. (This in my view is the real, tbough largely

neglected, reason for the large overlaps in some current labor force surveys.)

18. Errors removed or reduced can be a considerable advantage of

panels, if procedures are intreduced to check for differences and for consistency.

14. Familiarity with the sampling units and with the individuals can
often have positive results, in contrast to the negative and feared effects of
atwrition (2), reactivity (8) and laxity (9). For demographic surveys in
developing countries it has been noted that: “The survey staff will master their
duties better and learn to know the sample areas and even the population. For
their part the respondents, meeting interviewers they already know, become
more relaxed and willing to answer guestions. It has been reported in several
surveys which have lasted three or more vears that initial suspicion and
reserve bave with repeat visits given way to trust and the interviewers have
been received with pleasure as old friends [Cantrelle 1974; Nepal 1976; Iran
18787 [Kannisto 1983; UN 1984].
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B.  Prospective Panels versus Retrospective Studies

This contrast differs greatly from the contrast of a panel with a similar
wtal number (kn) of visits. Here instead, the use, value and cost of & panel of
several waves is contrasted with a one wave study, which depends on
retrospective recollection of data over time. This contrast is best developed in
the literature of epidemiology and public health as “retrospective” versus
“prospective” stu:lies of diseases and risks. The two kinds of contrasts give
extreme}y different views. This is especially true of costs, becanse panels seem
less costly per interview than a similar number of new waves, but prospective
panels are much more costly per individual than e one time rewrospective
study. We now turn to a listing of the problems of prospective panels that lead
often to using refrospective studies (1,2,3), followed by the doubts inherent in
their use (4,5,6,7,8). ) \

1. Higher costs. Panels of several waves are bound to incur
considerably higher costs than a retrospective study of single observations

{interviewers) on a similar number of individuals.

2. Raore events. Prospective studies of panels with several (many)
waves can become especially expensive when one proportion of “susceptibles,”

or of “diseased” and especially of “susceptibles with disease” is small.

3.  Deluyed results. This may often be the principal reason for using
retrospective studies, instesd of waiting for years or decades, which the full
unfolding of a prospective panel would require. It mav be possible sometimes
to do a retrospective study soon and then also begin a prospective long—range
project to allay eventually the doubts from the former (6,7,8).

4. Panel futigue, bios, mortality, Mortality and other selection biases
are likely to be greater in retrospective than in prospective studies (7).
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§. Lack of randomization. Random assignments of treatments seldom
seems feasible, and often probability selection of individuals is also too
expensive. However, it would be unreasonable to hold these imperfections
agé.inst prospective panels, since these factors are likely to face greater
hazards and doubts in retrospective studies.

6. Bigses of memory, recall, retrieval. These cover the principal
objections to retrospective studies and much is written about them.

7. Mortality biases. These refer to biases in the population arising from
possible differential mortality (and other losses from attrition) between the two
contrasts of comparisons. These biases may have greater effects in

retrospective studies, because they may be traced in prospective panels.

8. Selection biases. In addition to biases in the population, retrospective

studies may also suffer more from selection biases.
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CHAPTER 17 CENSUSES AND SAMPLES
17.1 COMPARING SAMPLES WITH CENSUSES

The costs and the advantages and disadvantages of using a sample
compared to a complete census to cover a national population is sur main
concern bere, The contrasts between samples sand complete censuses is more
striking and decisive for large,. national populations than for a province or
district. The comparisons may also be different for a population of households
than for an inclusive agricultural count of many ‘products with different
seasonal variations. If the total cost is fixed, a different problem would be
faced in comparing a modest sized national sample versus a complete census of
one province, or a few provinces. . Also the problems would be limited for
limited populations; for example, for mailed guestionnaires to members of some
association.

This discussion must focus on censuses of population and housing, which
are sources and frames for sampling dwellings and households. These are
often used for agricultural and food surveys. Agricultural censuses, of course,
have also been used for samples of holdings, though lists and locations of
holdings may become obsolescent faster than frames for dwellings [FAQ 1877,
1978a).

However, to cover the holdings or households of a large and widespread
national population requires great efforts and the contrasts between censuses
and samples are striking. “Complete censuses are nevertheless relatively
expensive and slow, and even with today’s modern, efficient procedures it can
take four years to get most of the census data into the hands of users. These
are the basic reasons for not taking censuses more often, or with greater depth
and richness of data. )
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Table 17.1.1
Eight Criteria for Comparing Three Sources of Data
{from Kish 1979]

Criteria Samples Census Adm. Registers
Rich, Complex, Diverse, Flexible bl
Accurate, Relevant, Pertinent * 7
‘Inexpensive * waw
Timely, Opportune, Seasonal i ®
Precise (large and complete) ® &
Detailed w *
Inclusive (coverage), Credible, P.R. * 7
Population Content o *

“Therefore the primary objective of a census is typically to obtain a
detailed and complete picture of the number (size) and basic structural and
related characteristics of the population, and to provide as much detsil as

possible for small domains and especially for local areas...

“By contrast, inquiries confined to samples of the population can, by
virtue of their smaller sizes, be designed to obtain a wide variety of complete
data for studies of interrelationships and changes. Such data are not gathered
in complete censuses: attempts to do so would result in very high costs and,
even more important, in low gquality. Furthermore, sample surveys can be
tailored flexibly to fit a variety of needs with appropriate methods of collection,
Choice of timing, of respondents, and of methods can be suite;i to the needs of
data collection. The content of the study population can be better controlled
and directed toward the specific survey aims; such flexibility may be prohibited
by the public aspects of the census. Sample surveys are much cheaper, and
they can be made much more timely. They can be repeated more often to
provide information on rapidly changing or fluctuating variables” [Kish 1987,
5.21.
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Table 17.1.1 presents subjective judgments on eight criteria about
reldgtive values for three major sources of data, which may be competing
alternatives. Though this list is mperfect and incomplete, its use may help to
avoid choices based on only one or two criteria. The relative and
complementary advantages of samples and censuses are shown (¥) to depend
on different criteria: samples seem better in five criteria and complete censuses
on three others. The importance of the criteria, as well as the relative
advantages of the two sources, will depend on and vary greatly with gétual

situations, countries and times.

The quality of registers is even more variable and extreme differences
may exist in their accuracy and inclusiveness for diverse variables and in
different situations. Utility records (electricity, water, gas, telephones), tax
records, birth and death ‘records may be complete and accurate or bad; and
even good records are often out of date for the current location of holders and
households, They are inexpensive (***) because other needs pay their costs,
But they seldom contain the data needed for agricultural and food surveys and

they are included here only for completeness.

17.2 COMBINATIONS OF CENSUSES WITH SAMPLES

Samples and censuses should be viewed not only as competing methods,
but also as methods that may be combined to produce better and cheaper data
than either method can produce alone. This prospect is strengthened by the
complementary advantages noted on @veral criteria for the two sources in
Table 17.1.1 “Therefore the primary objective of a census is typically to obtain
a detailed and complete picture of the number (size) and basic structural and
related characteristies of the population, and to provide as much detail as
possible for small domains and éspecialiy for local areas. For example, the
population census provides information on the size, age--sex composition,
geographic  distribution, and basic demographic and sociceconomic

characteristics of the population; similarly, agricultural censuses are designed
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to provide basic data on structural and related characteristics of agriculture,
including numbers of holdings by size, location, type and land—use (Khamis
and Alonzo 1975). By contrast, inguiries confined to samples of the population
can, by virtue of their smaller sizes, be designed to obtain a wide variety of
data for the study of changes and interrelationships” [Kish and Verma 1986).

There are several ways to combine samples with censuses to improve
data collection and statistics. And here it would be good to consider the
relatively large “sample censuses” as censuses, although they are based on
samples rather than on complete censuses. By combining reduced costs and
richer data with greater area detail large sample censuses (e.g., I or 10 percent)
themselves should be considered as combiﬁations of samples with censuses. This
may be said of the 1970 and 1980 rounds of sample censuses of agriculture
[Khamis and Alonzo 1975).

“The census forms the basis for subseguent surveys in a number of
ways: by providing the sampling frame; by providing auziliary information for
improved estimation, especially estimation of population totals through
regression and ratio estimates; and by mobilizing resources for the development
of infrastructural facilities for conducting subseguent sample surveys. Samples
attached to the census can also serve as the basis for a programe of continuing
surveys” [Kish and Verma 1975]. See (4) in Table 17.2.1.

A. Sampling frame. “Good samples need and are based on census data,
especially in countries where alternative sources such as population registers
are not available, The population census is the chief source of the sampling
frame not only for household surveys covering a variety of demographic, soeial,
and economic topics, including surveys of housebolds and agriculture, but often
also for establishment surveys, especially in sectors of small, informal
businesses.”

The “enumeration areas” or “districts” (EA’s or ED's) of censuses serve
several functions: to partition the population’s total srea into small areas with
clear, identifiable, and stable boundaries based on maps and descriptions; to
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facilitate complete and unigue coverage of the units in the population; to create
equitable and feasible workloads; to facilitate organization and control of census
operations; to provide flexible area units for administrative area statistics at
several levels., They also provide a basis for scientific and efficient sample
selections for later surveys. They can do this for sampling households and
hoidings, which are stable enough for area sampling. On the other hand,
census addresses and personal identifications are both changeable and
confidential, and thus not fit to serve as sampling frames.

EA’s can serve as frames best when they are relatively small and
uniform in population, also with clear and identifiable boundaries that are
available for sample surveys, together with information on population sizes and
ori basic characteristes, These are needed for measures of size in PPS
selection and for stratification, also perhaps for estimation.

B. Estimation, Ratio and regression estimators, and others, can be used tw
improve sample statistics in combination with census data (12.3). Totals and
agpregates can be especially improved with census counts,' if the sample
statistics like ratio means are based on small samples. The estimation problem

in especially acute for small domains, particularly small area domains (14.5).

C. Census b for continuing surveys. “The census is a major operation

which can provide great impetus to the development of national statistical
ot'génimtions. In addition, large--scale surveys attached to the census can
provide a convenient and efficient basis for launching continuing survey
programs, Later surveys can be smaller in scale but more varied and complex
in content, or they can be specially designed to monitor changes, as for example
in multi-round dernographic surveys. The larger baseline survey can provide
a master sample for more efficient and convenient subsampling for and
estimation from the subsequent, smaller surveys. We hope that greater
attention will be paid to these possibilitias in future rounds of population
censuses” [Kish and Verma 1888].
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17.3 SAMPLES WITHIN CENSUSES

Five kinds of connections of samples with censuses are listed in Table
17.8.1. Of these set number 4, censuses as auxiliary data for samples, was
discussed above (17.2). Joint uses of several sources for postcensal estimates
for small domains (5) is discussed later (17.5). Here we note three wéys for
using samples to improve censuses: to supplement, to evaluate and to better
utilize the data of censuses (1, 2, ). These too brief notes clearly need details
and deeper discussions from elsewhere [UN 1971, 1982], and a list is available
in [Kish and Verma 1888].

Table 17.3.1
Samples Connected with Censuses [Kish 1978)

1. Sample enumerations to supplement complete censuses:
(a) Obtain richer, more diverse, detailed, deeper data
() Reduce costs of collection and of tabulation
(¢) Obtain more accurate data, perhaps with special enumerators
(d) Reduce aggregate social burden on respondents

2. Samples added to complete censuses to evaluate and to improve them:
(a) Evaluation studies of content (Post Evaluation Studies)
(1) Coverage checks: dual coverage
(¢} Pilot studies of questions and techniques before the census
(d) Quality control of individual enumerators, coders, processors

3. Samples from census records, microfilms, tapes:
_{a) Early (advanced, preliminary) tabulation and releases
(b) Complex, multivariate analyses of relations :
(¢) Public use tapes for further, deeper analyses,
(without identification of respondents)

4, Census as auxiliary data for samples:
{a) Data for selections: measures of size, stratifiers, maps of enumeration
areas; seldom addresses or names
(b} Data for improved estimation with ratios, regressions
(c) Samples added to censuses t serve as bases for continuing surveys

&, Joint uses of several sources:
{a) Current estimates for local areas and small domaing
(b) Rolling {rotating) monthly samples of 1/120 (weekly 1/620)
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Perhaps all of these methods have been used somewhere, sometime, but
their use is still somewhat sporadic and arbitrary, and this listing may be
useful to remind those who are planning a census, whether on & 100 percent or

on a large sample basis.

Sumple enumerations to supplement s. On complete censuses each

guestion is expensive, because it is multiplied by the sizes of the populations
(holdings, households, persons, ete.). Heﬂée complete censuses should be kept
brief and simple, but more diverse data may be obtained with samples of the
entire census. These samples (1:100 or 1:10) can be much smalier than the
complete census but still much larger than most sample surveys. The sampling
units may be elements (holdings, households) or entire EA’s. The timing may
coincide with the census or it may be done separately. If done separately,
perhaps special teams of enumerators may be hired and trained. These sample
supplements not only save costs but they can also obtain richer, deeper data
and with higher quality.

Samples added to censuses to evaluate and fo improve them. Samples for
evaluating and improving the entire census are discussed later (17.4). Quality
control, evaluation, and correction of specific individual enumerators peed
different procedures, because they need individual attention and specific
treatments which must be suited to actual field conditions, and to procedures of
supervision. The guality control of editors and coders in the office is another
matter that is better treated elsewhere. Both of these controls will differ

greatly between organizations and situations.

Samples from census schedules, “Whereas in classes 1 and 2 we
discussed sampling of the data collected in the field, in class 3 we are concerned
with sampling from the already collected census data. There are three distinct
purposes for such samples, and their timing differs greatly; hence they need
different methods of selection.
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. “Where early tebulations and releases are wanted, it is convenient 1o
base them on selections of entire EAs (or even administrative districts) in
accord with the system of returns from the field collection. The selections
should be predesignated and speeded along. They should represent good and
valid samples, not xxierely the first arrivals, which are bound to be biased
portions of the population.

“Continuing advances in both statistical and computing methods have
made it both desirable and possible to conduct more complex analyses of census
data, and demands increase for deeper multivariate analyses of relations. For
some of these it is convenient to select samples from the entire census to reduce
computations, though this need for sampling may be reduced with faster
machines and better programs, The analyses can vary in nature, scope, and
timing. They are usually done from tapes in the statistical offices to preserve
the confidentiality of the data,

“Public—~use tapes are also prepared from census tapes for the use of
researchers. Data that could identify individuals are removed from the tapes,
and random selections help greatly to prevent identification. Samplés of
households are preferred for these uses; spreading the sample reduces the level

of sampling errors, and it also facilitates the estimation of those errors by

1,

avoiding clustering. Households are easier to ¢ than per , and they
provide samples of persons, families, and houssholds. The clustering of
individuals in households matters little in analyses, which seldom group
multiple members of the same households into the same cells. Such public~
use tapes are gaining in use and several countries are preparing them. The
spreading availability of computers and related skills is chiefly responsible for
this growth., Furthermore, public—use tapes are also being prepared from
schedules of old censuses for historical analyses. It is also true {(and sad) that
the releases of "current* census dsta may need several vears, making their
analysis somewhat “historical® for ;apidly changing variables” [Kish 1987,
5.8D1
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17.4 CHECKS, EVALUATIONS, ADJUSTMENTS, PES

Evaluation surveys can have multiple purposes: not only to check the
quality of the census, but also to evaluate, and furthermore even to measure
the sizes of errors and its components on various, perhaps all, questions.
Those checks and evaluations should serve to bmprove future censuses. The
boldest use of measures of errors would be to use them to adjust the census

returns, but that is still not done often,

The sizes of these samples, 1:100 or 2:1,000 or 1:10,000 of complete
censuses are usually much smaller than the supplements. Yet the sample sizes
(n's) needed for usable results are still too large for attachment to most sample

BUrVEYs.

The evaluations try to measure two broad kinds of errorsﬁ errors of
content (observation, response, nonresponse) and errors 6f" eoverage (omission
and duplication). The emphasis in evaluation surveys tends to be on
systematic biases, though variable errors mav also be messured (15.1).
Several options must be examined, some of them related, in designing

evaluation surveys.

Timing. Post—enumeration surveys (PES) are best known and most
common for evaluations. However, evaluations conducted simultaneously with

the mnain census are possible.

Enumerator teams. Either the regular census enumerators, or separate
teams may be specially hired and trained. Sometimes either the supervisors or

the best enumerators may be used for the PES,

Quverlap of the evaluntion with the census. The evaluation may be an
additional task for the selected sample of respondents, or it may replace the

ordinary census enumeration in the sample areas.
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Independence of evaluation observations. If the evaluation is additional to
the census enumeration, the PES enumerators, if they not the Census takers,
" may be kept ignorant of the Census answers; or they may have them in order

to check snd improve on them.

Combining evaluation of coverage and of content. These may be combined

when entire EA’s are selected for the evaluation surveys.

Design and size of the evoluntion surveys. If these must serve for
guantitative measures of the biases, and especially for adjustments, they must
be based on probability samples. If funds are lacking and only informal checks
of quality are wanted, then restricted areas may be sausfactory In these
cases, perhaps particular emphasis may be put on the presumed most difficult,

critical areas of greatest possible biases,

“Pilot studies are required to test the adequacy of census questionnaires,
instructions, training programs, enumeration procedures, field organization, ete.
They serve as practical training for the nuclear staff and supervisors, and
provide information on operational aspects (costs, time) of enumeration. For
pilots, it is usually diffieu)t to insist on geod samples of the entire country: the
common practice is to choose areas which are convenient but also expected to
vield a good test of questions and techniques in diverse circumistances” [Kish
and Verma 1986].

17.5 POSTCENSAL ESTIMATES FOR SMALL DOMAINS

Census data are usually obsolete, data from registers inadequate, and
sample data lacking in detail, especially for local areas. Since the strengths
and weaknesses of the three sources are complementary, it seems reasonsble
w try to combine the mtrengths of the three sources to obtain estimates for
small domains, especially for local areas; estimates that are cwrrent, pertinent,
and accurate. To the general needs of researchers have been added the needs
of social planners, of administrators, and of policy makers for valid, current
data for small domains and local aress. Local ares estimation has become &
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fast—developing field, being pushed by increasing demands, and simultaneously
pulled along by new developments in computing technology and new statistical
technigues. These problems of “posteensal estimates” are treated currently as
technical problems for estimates of the total population in small local
administrative areas, with a new, large, but specialized list of publications; a
few references can be the key to the longer list [Purcell and Kish 1979, 1980;
Heeringa 1982; Platek, Rao, Sarndal, Singh 1987].
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